我们提出了一种有效的方法,用于从多视图图像观察中联合优化拓扑,材料和照明。与最近的多视图重建方法不同,通常在神经网络中产生纠缠的3D表示,我们将三角形网格输出具有空间不同的材料和环境照明,这些方法可以在任何传统的图形引擎中未修改。我们利用近期工作在可差异化的渲染中,基于坐标的网络紧凑地代表体积纹理,以及可微分的游行四边形,以便直接在表面网上直接实现基于梯度的优化。最后,我们介绍了环境照明的分流和近似的可分辨率配方,以有效地回收全频照明。实验表明我们的提取模型用于高级场景编辑,材料分解和高质量的视图插值,全部以三角形的渲染器(光栅化器和路径示踪剂)的交互式速率运行。
translated by 谷歌翻译
在本文中,我们检查了复杂性的概念,因为它适用于生成和进化艺术和设计。复杂性具有许多不同,纪律的特定定义,例如物理系统(熵)的复杂性,信息复杂性的算法测量和“复杂系统”。我们将一系列不同的复杂度措施应用于三个不同的进化艺术数据集,并查看艺术家的复杂性和个人审美判断之间的相关性(在两个数据集的情况下)或生成3D形式的物理测量复杂性。我们的结果表明,每个集合和测量的相关程度都不同,表明没有整体“更好”的措施。但是,具体措施确实在各个数据集中表现良好,表明仔细选择可以增加使用此类措施的值。然后,我们通过对复杂性和美学的看法进行大规模调查来评估观众复杂度措施的价值。我们通过讨论生成和进化艺术中的直接措施的价值来得出结论,提高神经影像学和心理学的最新发现,这提出了人类审美判断的许多外在因素,超出了所判断的物体的可测量特性。
translated by 谷歌翻译
近年来,深入学习已成功应用于自动化各种诊断组织病理学的任务。然而,小规模地区的快速可靠的本地化(ROI)仍然是一个关键挑战,因为鉴别性形态特征通常只占据一小部分的千兆像素级全幻灯片(WSI)。在本文中,我们提出了一种稀疏的WSI分析方法,用于快速识别WSI级分类的高功率ROI。我们开发由早期分类文献的评估框架,以量化稀疏分析方法的诊断性能和推理时间之间的权衡。我们在病理学中的常见但耗时的任务中测试了我们的方法 - 从内镜活检标本诊断血液杂志和曙红(H&E) - 染色的载玻片上诊断胃肠元(GIM)。 Gim是沿着胃癌发展途径的着名前体病变。我们对我们的方法的性能和推理时间进行了彻底的评估,我们在GIM阳性和GIM负面WSI上的测试集中,发现我们的方法在所有正面WSI中成功地检测到GIM,接收器下的WSI级分类区域操作特性曲线(AUC)为0.98和0.95的平均精度(AP)。此外,我们表明我们的方法可以在标准CPU上达到一分钟内的这些指标。我们的结果适用于开发神经网络的目的,可以轻松地部署在临床环境中,以支持病理学家在快速定位和诊断WSI中的小规模形态特征。
translated by 谷歌翻译
许多图像处理网络在整个输入图像上应用一组静态卷积核,这是自然图像的次优,因为它们通常由异质视觉模式组成。最近在分类,分割和图像恢复方面的工作已经证明,动态核优于局部图像统计数据的静态内核。然而,这些工作经常采用每像素卷积核,这引入了高存储器和计算成本。为了在没有显着开销的情况下实现空间变化的处理,我们呈现\ TextBF {Malle} Chable \ TextBF {CONV} olution(\ textbf {malleconv}),作为动态卷积的有效变体。 \我们的权重由能够在特定空间位置产生内容相关的输出的有效预测器网络动态地产生。与以前的作品不同,\我们从输入生成一组更小的空间变化内核,这会扩大网络的接收领域,并显着降低计算和内存成本。然后通过具有最小内存开销的高效切片和-Conver操作员将这些内核应用于全分辨率的特征映射。我们进一步使用MalleConv建立了高效的去噪网络,被创建为\ textbf {mallenet}。它实现了高质量的结果,没有非常深的架构,例如,它是8.91 $ \ times $的速度快于最好的去噪算法(Swinir),同时保持类似的性能。我们还表明,添加到标准的基于卷积的骨干的单个\我们可以贡献显着降低计算成本或以相似的成本提高图像质量。项目页面:https://yifanjiang.net/malleconv.html
translated by 谷歌翻译
超越地球轨道的人类空间勘探将涉及大量距离和持续时间的任务。为了有效减轻无数空间健康危害,数据和空间健康系统的范式转移是实现地球独立性的,而不是Earth-Reliance所必需的。有希望在生物学和健康的人工智能和机器学习领域的发展可以解决这些需求。我们提出了一个适当的自主和智能精密空间健康系统,可以监控,汇总和评估生物医学状态;分析和预测个性化不良健康结果;适应并响应新累积的数据;并提供对其船员医务人员的个人深度空间机组人员和迭代决策支持的预防性,可操作和及时的见解。在这里,我们介绍了美国国家航空航天局组织的研讨会的建议摘要,以便在太空生物学和健康中未来的人工智能应用。在未来十年,生物监测技术,生物标志科学,航天器硬件,智能软件和简化的数据管理必须成熟,并编织成精确的空间健康系统,以使人类在深空中茁壮成长。
translated by 谷歌翻译
空间生物学研究旨在了解太空飞行对生物的根本影响,制定支持深度空间探索的基础知识,最终生物工程航天器和栖息地稳定植物,农作物,微生物,动物和人类的生态系统,为持续的多行星寿命稳定。要提高这些目标,该领域利用了来自星空和地下模拟研究的实验,平台,数据和模型生物。由于研究扩展到低地球轨道之外,实验和平台必须是最大自主,光,敏捷和智能化,以加快知识发现。在这里,我们介绍了由美国国家航空航天局的人工智能,机器学习和建模应用程序组织的研讨会的建议摘要,这些应用程序为这些空间生物学挑战提供了关键解决方案。在未来十年中,将人工智能融入太空生物学领域将深化天空效应的生物学理解,促进预测性建模和分析,支持最大自主和可重复的实验,并有效地管理星载数据和元数据,所有目标使生活能够在深空中茁壮成长。
translated by 谷歌翻译
属性值提取是指识别来自产品信息的感兴趣属性的值的任务。产品属性值在许多电子商务方案中是必不可少的,例如客户服务机器人,产品排名,检索和建议。在现实世界中,产品的属性值通常不完整并随着时间的变化而变化,这极大地阻碍了实际应用。在本文中,我们介绍了一个新的数据集,以更好地促进产品属性值提取的研究。 Mave由亚马逊页面的策划组220万产品组成,跨越1257个独特类别的300万个属性值注释。 Mave有四个主要和独特的优势:首先,Mave是由属性值示例的数量的最大产品属性值提取数据集。其次,MAVE包括来自产品的多源表示,其捕获具有高属性覆盖的完整产品信息。第三,Mave表示相对于先前的数据集覆盖范围的更多样化的属性和值。最后,Mave提供了一个非常具有挑战性的零点测试集,因为我们经验在实验中说明。我们进一步提出了一种新的方法,它有效地从多源产品信息中提取了属性值。我们使用几个基线进行广泛的实验,并显示MAVE是属性值提取任务的有效数据集。它在零拍摄属性提取也是一个非常具有挑战性的任务。数据可在{\ it \ url {https://github.com/google-research-datasets/mave}}上获得。
translated by 谷歌翻译
随着各种公开的AI伦理原则的共识,差距仍然可以随时采用设计和开发负责任的AI系统。我们研究了来自澳大利亚国家科学研究机构(CSIRO)的研究人员和工程师的实践和经验,他们参与设计和开发AI系统的一系列目的。半结构化访谈用于检查参与者的做法如何与澳大利亚政府提出的一套高级AI伦理原则涉及并对齐。原则包括:隐私保护和安全,可靠性和安全性,透明度和解释性,公平性,竞争性,责任,人以人为本的价值观和人类,社会与环境福祉。研究了研究人员和工程师的见解以及在原则的实际应用中为它们提供的挑战。最后,提供了一系列组织响应,以支持实施高级AI道德原则。
translated by 谷歌翻译
密集对象跟踪,能够通过像素级精度本地化特定的对象点,是一个重要的计算机视觉任务,具有多种机器人的下游应用程序。现有方法在单个前向通行证中计算密集的键盘嵌入,这意味着模型培训以一次性跟踪所有内容,或者将它们的全部容量分配给稀疏预定义的点,交易一般性以获得准确性。在本文中,我们基于观察到给定时间的相关点数通常相对较少,例如,探索中间地面。掌握目标对象的点。我们的主要贡献是一种新颖的架构,灵感来自少量任务适应,这允许一个稀疏样式的网络在嵌入点嵌入的关键点嵌入时的条件。我们的中央发现是,这种方法提供了密集嵌入模型的一般性,同时提供准确性更加接近稀疏关键点方法。我们呈现了说明此容量与准确性权衡的结果,并使用真正的机器人挑选任务展示将转移到新对象实例(在课程中)的能力。
translated by 谷歌翻译
神经信息检索(IR)具有极大的搜索和其他知识密集型语言任务。虽然许多神经IR方法将查询和文档编码为单载表示,但后期交互模型在每个令牌的粒度下产生多向量表示,并将相关性建模分解为可伸缩的令牌级计算。这种分解已被证明可以使迟到的交互更有效,但它以幅度的数量级膨胀这些模型的空间占地面积。在这项工作中,我们介绍了Colbertv2,这是一种猎犬,其与去噪的监督策略相结合的侵略性的残余压缩机制,同时提高晚期互动的质量和空间足迹。我们在各种基准中评估COLBertv2,在培训域内和外部建立最先进的质量,同时减少了晚期互动模型的空间足迹5-8 $ \ times $。
translated by 谷歌翻译