医疗AI通过支持基于证据的医学实践,个性化患者治疗,降低成本以及改善提供者和患者体验,推进医疗保健的巨大潜力。我们认为解锁此潜力需要一种系统的方法来衡量在大规模异构数据上的医疗AI模型的性能。为了满足这种需求,我们正在建立Medperf,这是一个开放的框架,用于在医疗领域的基准测试机器学习。 Medperf将使联合评估能够将模型安全地分配给不同的评估设施,从而赋予医疗组织在高效和人类监督过程中评估和验证AI模型的性能,同时优先考虑隐私。我们描述了当前的挑战医疗保健和AI社区面临,需要开放平台,Medperf的设计理念,其目前的实施状态和我们的路线图。我们呼吁研究人员和组织加入我们创建Medperf开放基准平台。
translated by 谷歌翻译
在高风险领域中采用卷积神经网络(CNN)模型受到了他们无法满足社会对决策透明度的需求的阻碍。到目前为止,已经出现了越来越多的方法来开发可通过设计解释的CNN模型。但是,这样的模型无法根据人类的看法提供解释,同时保持有能力的绩效。在本文中,我们通过实例化固有可解释的CNN模型的新颖的一般框架来应对这些挑战,该模型名为E pluribus unum unum Change Chandn(EPU-CNN)。 EPU-CNN模型由CNN子网络组成,每个工程都会收到表达感知特征的输入图像的不同表示,例如颜色或纹理。 EPU-CNN模型的输出由分类预测及其解释组成,其基于输入图像不同区域的感知特征的相对贡献。 EPU-CNN模型已在各种可公开可用的数据集以及贡献的基准数据集上进行了广泛的评估。医学数据集用于证明EPU-CNN在医学中对风险敏感的决策的适用性。实验结果表明,与其他CNN体系结构相比,EPU-CNN模型可以实现可比或更好的分类性能,同时提供人类可感知的解释。
translated by 谷歌翻译
通信网络中的时间延迟是通过边缘部署机器人的主要关注点之一。本文提出了一个多阶段的非线性模型预测控制(NMPC),该控制能够处理不同的网络引起的时间延迟,以建立控制框架,以确保无碰撞的无碰撞微型航空车(MAVS)导航。这项研究介绍了一种新颖的方法,该方法通过与现有的典型多阶段NMPC相反的离散化场景树来考虑不同的采样时间,在这种情况下,系统不确定性是由场景树建模的。此外,该方法根据通信链接中时间延迟的概率考虑了多阶段NMPC方案的自适应权重。由于多阶段NMPC,获得的最佳控制动作对于多个采样时间有效。最后,在各种测试和不同的模拟环境中证明了所提出的新型控制框架的总体有效性。
translated by 谷歌翻译
临床表型可以从患者记录中自动提取临床状况,这可能对全球医生和诊所有益。但是,当前的最新模型主要适用于用英语编写的临床笔记。因此,我们研究了跨语化知识转移策略,以针对不使用英语并且有少量可用数据的诊所执行此任务。我们评估了希腊和西班牙诊所的这些策略,利用来自心脏病学,肿瘤学和ICU等不同临床领域的临床笔记。我们的结果揭示了两种策略,这些策略优于最先进的方法:基于翻译的方法,结合了域的编码器和跨语性编码器以及适配器。我们发现,这些策略在对稀有表型进行分类方面表现特别好,我们建议在哪种情况下更喜欢哪种方法。我们的结果表明,使用多语言数据总体可以改善临床表型模型,并可以补偿数据稀疏性。
translated by 谷歌翻译
梁搜索是端到端模型的主要ASR解码算法,生成树结构化假设。但是,最近的研究表明,通过假设合并进行解码可以通过可比或更好的性能实现更有效的搜索。但是,复发网络中的完整上下文与假设合并不兼容。我们建议在RNN传感器的预测网络中使用矢量定量的长期记忆单元(VQ-LSTM)。通过与ASR网络共同培训离散表示形式,可以积极合并假设以生成晶格。我们在总机语料库上进行的实验表明,提出的VQ RNN传感器改善了具有常规预测网络的换能器的ASR性能,同时还产生了具有相同光束尺寸的Oracle Word错误率(WER)的密集晶格。其他语言模型撤退实验还证明了拟议的晶格生成方案的有效性。
translated by 谷歌翻译
了解极端事件及其可能性是研究气候变化影响,风险评估,适应和保护生物的关键。在这项工作中,我们开发了一种方法来构建极端热浪的预测模型。这些模型基于卷积神经网络,对极长的8,000年气候模型输出进行了培训。由于极端事件之间的关系本质上是概率的,因此我们强调概率预测和验证。我们证明,深度神经网络适用于法国持续持续14天的热浪,快速动态驱动器提前15天(500 hpa地球电位高度场),并且在慢速较长的交货时间内,慢速物理时间驱动器(土壤水分)。该方法很容易实现和通用。我们发现,深神经网络选择了与北半球波数字3模式相关的极端热浪。我们发现,当将2米温度场添加到500 HPA地球电位高度和土壤水分场中时,2米温度场不包含任何新的有用统计信息。主要的科学信息是,训练深层神经网络预测极端热浪的发生是在严重缺乏数据的情况下发生的。我们建议大多数其他应用在大规模的大气和气候现象中都是如此。我们讨论了处理缺乏数据制度的观点,例如罕见的事件模拟,以及转移学习如何在后一种任务中发挥作用。
translated by 谷歌翻译
当前的深度学习自适应优化器方法通过改变每个参数使用的有效学习率来调整参数更新的步骤幅度。由批处理大小和更新步骤幅度的学习率之间的已知反向关系激励,我们引入了一个新颖的培训程序,该过程动态地决定了当前更新步骤的维度和组成。我们的过程,动态批次适应(DBA)分析了每个样本的梯度,并选择了最能改善某些指标的子集,例如网络每一层的梯度差异。我们提出的结果显示DBA显着提高了模型收敛的速度。此外,我们发现DBA在数据稀缺条件中使用时,与标准优化器相比会提高改进MNIST数据集的测试准确性达到97.79%。在更加极端的情况下,它设法使用每班只有10个样本达到97.44%的测试精度。与标准优化器,随机梯度下降(SGD)和ADAM相比,这些结果分别代表了81.78%和88.07%的相对错误率降低。
translated by 谷歌翻译
本文考虑了安全协调一个配备传感器的机器人团队的问题,以减少有关动态过程的不确定性,而该过程将使目标消除信息增益和能源成本。优化这种权衡是可取的,但是在机器人轨迹集中导致非占主酮目标函数。因此,基于协调下降的普通多机器人计划者失去了其性能保证。此外,处理非单调性的方法在受到机器人间碰撞避免约束时会失去其性能保证。由于需要保留性能保证和安全保证,这项工作提出了一种分布式计划者的层次结构方法,该方法使用本地搜索,并根据控制屏障功能提供了基于控制屏障功能的当地搜索和分散的控制器,以确保安全并鼓励及时到达传感位置。通过大量的模拟,硬件测试和硬件实验,我们证明了所提出的方法比基于坐标下降的算法在感应和能源成本之间取得更好的权衡。
translated by 谷歌翻译
关于自适应梯度方法等自适应梯度方法等训练动力的知之甚少。在本文中,我们阐明了这些算法在全批处理和足够大的批处理设置中的行为。具体而言,我们从经验上证明,在全批训练中,预处理的Hessian的最大特征值通常在某个数值下平衡 - 梯度下降算法的稳定性阈值。对于带有步长$ \ eta $和$ \ beta_1 = 0.9 $的Adam,此稳定性阈值为$ 38/\ eta $。在Minibatch培训期间发生了类似的影响,尤其是随着批处理大小的增长。然而,即使自适应方法在``稳定性的自适应边缘''(AEOS)上训练,但它们在该制度中的行为与EOS的非自适应方法的行为有很大不同。 EOS处的非自适应算法被阻止进入损失景观的高曲率区域,而AEOS的自适应梯度方法可以继续前进到高外观区域,同时适应预先调节器以补偿。我们的发现可以成为社区对深度学习中适应性梯度方法的未来理解的基础。
translated by 谷歌翻译
单细胞RNA-seq数据允许在不断增长的一组生物环境中定量细胞类型差异。但是,确定了一小部分基因组特征来解释这种变异性可能是错误的,并且在计算上很棘手。在这里,我们介绍了MarkerMap,这是一种用于选择最小基因集的生成模型,这些基因集对细胞类型的起源提供最大信息,并启用整个转录组重建。MarkerMap为旨在识别特定细胞类型种群的监督标记选择提供了可扩展的框架,以及针对基因表达插补和重建的无监督标记选择。我们基于Markermap的竞争性能,以实现对真实单细胞基因表达数据集的先前发表的方法。MarkerMap可作为可安装的PIP软件包获得,可作为旨在开发可解释的机器学习技术的社区资源,以增强单细胞研究中的可解释性。
translated by 谷歌翻译