仿真最近已成为深度加强学习,以安全有效地从视觉和预防性投入获取一般和复杂的控制政策的关键。尽管它与环境互动直接关系,但通常认为触觉信息通常不会被认为。在这项工作中,我们展示了一套针对触觉机器人和加强学习量身定制的模拟环境。提供了一种简单且快速的模拟光学触觉传感器的方法,其中高分辨率接触几何形状表示为深度图像。近端策略优化(PPO)用于学习所有考虑任务的成功策略。数据驱动方法能够将实际触觉传感器的当前状态转换为对应的模拟深度图像。此策略在物理机器人上实时控制循环中实现,以演示零拍摄的SIM-TO-REAL策略转移,以触摸感的几个物理交互式任务。
translated by 谷歌翻译
本文提出了第二版的头部和颈部肿瘤(Hecktor)挑战的概述,作为第24届医学图像计算和计算机辅助干预(Miccai)2021的卫星活动。挑战由三个任务组成与患有头颈癌(H&N)的患者的PET / CT图像的自动分析有关,专注于oropharynx地区。任务1是FDG-PET / CT图像中H&N主肿瘤肿瘤体积(GTVT)的自动分割。任务2是来自同一FDG-PET / CT的进展自由生存(PFS)的自动预测。最后,任务3与任务2的任务2与参与者提供的地面真理GTVT注释相同。这些数据从六个中心收集,总共325个图像,分为224个培训和101个测试用例。通过103个注册团队和448个结果提交的重要参与,突出了对挑战的兴趣。在第一任务中获得0.7591的骰子相似度系数(DSC),分别在任务2和3中的0.7196和0.6978的一致性指数(C-Index)。在所有任务中,发现这种方法的简单性是确保泛化性能的关键。 PFS预测性能在任务2和3中的比较表明,提供GTVT轮廓对于实现最佳结果,这表明可以使用完全自动方法。这可能避免了对GTVT轮廓的需求,用于可重复和大规模的辐射瘤研究的开头途径,包括千元潜在的受试者。
translated by 谷歌翻译
在这项工作中,我们介绍了配备有明确性能的第一个初始化方法,该方法适用于姿势图同时定位和映射(SLAM)和旋转平均(RA)问题。 SLAM和旋转平均通常正义为大规模的非渗透点估计问题,具有许多糟糕的本地最小值,可以捕获通常应用的平滑优化方法来解决它们;因此,标准SLAM和RA算法的性能至关重要取决于用于初始化该本地搜索的估计的质量。虽然在文献中出现了SLAM和RA的许多初始化方法,但通常可以获得纯粹的启发式近似值,这使得难以确定是否(或在什么情况下)这些技术可以可靠地部署这些技术。相比之下,在这项工作中,我们研究通过光谱松弛镜头初始化的问题。具体而言,我们推出了SLAM和RA的简单谱弛豫,其形式使我们能够利用经典的线性代数技术(特征向量扰动界限)来控制从我们的光谱估计到(未知)地基实际和该距离作为测量噪声的函数的估计问题的全局最小化器。我们的结果揭示了测量网络在控制估计精度下播放的光谱图 - 理论性能的关键作用;此外,作为我们分析的副产物,我们在估计误差上获得了最大似然估计的估计误差,这可能具有独立兴趣。最后,我们在实验上展示了我们的光谱估计器在实践中非常有效,与现有的最先进技术相比,在较低的计算成本下生产可比或优异质量的初始化。
translated by 谷歌翻译
概率模型告知越来越广泛的商业和政策决策最终是人们的。最近的算法,计算和软件框架开发进步促进了贝叶斯概率模型的扩散,其通过其联合分布而不是点估计来表征未观察的参数。虽然他们可以授权决策者探索复杂的查询并在理论上执行什么样式的调理,因此需要适当的可视化和交互式工具来最大化用户的理解和理性决策在不确定性下。在本文中,提出了一种对贝叶斯模型的定量评估的协议,并引入实现该协议的软件框架,以支持评估实践中的标准化,并促进再现性。我们说明了对用户学习的评估和分析工作流程,探讨了制作Boxpots和假设结果情节互动可以增加理解或合理性,并在未来寻求进行类似研究的研究人员的设计指导方针得出。
translated by 谷歌翻译
由于极大数量的参数和评估标准和再现性,机器学习长期以来被视为黑盒子,用于预测燃烧化学动力学和缺乏评估标准和再现性。目前的工作旨在了解关于深度神经网络(DNN)方法的两个基本问题:DNN需要的数据以及DNN方法的一般数据。采样和预处理确定DNN训练数据集,进一步影响DNN预测能力。目前的工作建议使用Box-Cox转换(BCT)来预处理燃烧数据。此外,这项工作比较了在没有预处理的情况下进行了不同的采样方法,包括蒙特卡罗方法,歧管采样,生成神经网络方法(Cycle-GaN)和新提出的多尺度采样。我们的研究结果表明,通过歧管数据训练的DNN可以以有限的配置捕获化学动力学,但不能对扰动牢固,这对于与流场联系的DNN是不可避免的。蒙特卡罗和循环甘套采样可以覆盖更宽的相位空间,但不能捕获小规模的中间物种,产生差的预测结果。基于没有特定火焰仿真数据的多尺度方法的三层DNN,允许在各种场景中预测化学动力学并在时间的演变期间保持稳定。该单个DNN易于用几个CFD代码实现并在各种燃烧器中验证,包括(1)。零维自动化,(2)。一维自由传播火焰,(3)。具有三重火焰结构的二维喷射火焰,和(4)。三维湍流升降火焰。结果证明了预先训练的DNN的令人满意的准确性和泛化能力。 DNN和示例代码的FORTRAN和PYTHON版本在补充中附加了再现性。
translated by 谷歌翻译
时间序列数据收集之间的因果发现可以帮助诊断症状的原因,并希望在发生故障之前防止故障。然而,可靠的因果发现可能非常具有挑战性,特别是当数据采集率变化(即,不均匀的数据采样)时,或在存在丢失的数据点(例如,稀疏数据采样)时。为了解决这些问题,我们提出了一个由两个部分组成的新系统,第一部分填充了具有高斯进程回归的缺失数据,第二部分利用了回声状态网络,即储层计算机(即,用于混沌的类型系统建模)对于因果发现。我们评估我们提出的系统对其他三个现成的因果发现算法的性能,即结构期望 - 最大化,子采样的线性自动回归绝对系数,以及使用田纳西州伊斯曼的传染媒介自回归的多变量格兰杰因果关系化学数据集;我们报告了它们对应的Matthews相关系数(MCC)和接收器操作特征曲线(ROC),并表明所提出的系统优于现有的算法,展示了我们在缺失条目中发现复杂系统中的因果关系的可行性。
translated by 谷歌翻译
提出了一种基于深度学习的模型减少(DeepMR)用于简化化学动力学的方法,并使用高温自动点火,完全搅拌反应器(PSR)和一维自由传播的正庚烷/空气混合物的一致性。减少机制被建模为布尔空间的优化问题,其中布尔向量,与物种对应的每个条目表示减少的机制。优化目标是最小化给定考虑到一组预选的基准量的误差的机制尺寸。 DeepMR的关键思想是使用深度神经网络(DNN)来制定优化问题中的目标函数。为了有效地探索高维布尔空间,实现了一种迭代的DNN辅助数据采样和DNN训练过程。结果表明,DNN辅助显着提高了采样效率,仅为10 ^ {34}美元的样本中选择了10 ^ 5美元的样品,以实现足够的准确性。结果证明了DNN识别关键物种的能力,合理预测机制性能降低。训练有素的DNN通过解决反向优化问题,保证了最佳减少的机制。通过比较点火延迟时间,Laminar火焰速度,PSR的温度,得到的骨骼机制具有更少的物种(45种),但与通过路径通量分析(PFA)方法获得的骨骼机制(56种)相同的精度水平。另外,如果仅考虑大气,近化学计量条件(0.6和1.2之间的等效比),则骨骼机构可以进一步减少到28种。 DeepMR提供了一种进行模型减少的创新方法,并演示了燃烧区域中数据驱动方法的巨大潜力。
translated by 谷歌翻译
对象接地任务旨在通过口头通信定位图像中的目标对象。了解人类命令是有效人体机器人通信所需的重要过程。然而,这是具有挑战性的,因为人类命令可能是暧昧和错误的。本文旨在消除人类的引用表达式,允许代理基于从场景图获得的语义数据提出相关问题。我们测试如果我们的代理可以从场景图之间使用对象之间的关系,以便询问可以消除原始用户命令的语义相关问题。在本文中,我们使用场景图(IGSG)提出增量接地,消歧模型使用从图像场景图和语言场景图到基于人类命令的地面对象的语义数据的歧义模型。与基线相比,IGSG显示了有希望的成果,在有多个相同的目标对象的复杂现实场景中。 IGSG可以通过要求消除歧义问题回到用户来有效消除歧义或错误的表达式。
translated by 谷歌翻译
研究多层合作研究中的一个关键挑战是不仅需要有效合作的个人代理,而且需要与谁合作。当其他代理人隐藏的情况下,可能是错误的动机和目标时,这在局势中特别关键。社交扣除游戏提供途径来研究个人如何学习如何综合有关其他人的潜在不可靠的信息,并阐明其真正的动机。在这项工作中,我们展示了隐藏的议程,这是一个双队的社交扣除游戏,为在未知团队对齐的情况下学习学习代理的2D环境。环境承认两支球队的丰富战略。在隐藏议程中培训的强化学习代理表明,代理商可以学习各种行为,包括合作和投票,而无需以自然语言沟通。
translated by 谷歌翻译
我们认为当前的红外标准,用于优化用户体验,测量太窄的IR空间的一部分。如果IR系统较弱,这些指标缺乏或完全过滤出需要改进的更深层次的文件。如果IR系统相对强,则这些指标欠更深的相关文档,这些文档可以在用户可消化的层次结构或文本摘要中呈现出甚至更强大的IR系统,这些文件甚至可以呈现来自数十或数百个相关文档的内容。我们从过去28年重新分析了超过70个TREC曲目,显示大约一半的欠压排名的文件,几乎所有的缺乏尾部文件。我们展示在2020年的深度学习轨道中,神经系统在排名第一的文件中实际上是近乎最佳的,而在尾部文件上只有BM25的适度增益相比。我们的分析基于简单的新系统导向度量,“雾化搜索长度”,它能够在任何深度准确且均匀地测量所有相关文档。
translated by 谷歌翻译