We present a method for controlling a swarm using its spectral decomposition -- that is, by describing the set of trajectories of a swarm in terms of a spatial distribution throughout the operational domain -- guaranteeing scale invariance with respect to the number of agents both for computation and for the operator tasked with controlling the swarm. We use ergodic control, decentralized across the network, for implementation. In the DARPA OFFSET program field setting, we test this interface design for the operator using the STOMP interface -- the same interface used by Raytheon BBN throughout the duration of the OFFSET program. In these tests, we demonstrate that our approach is scale-invariant -- the user specification does not depend on the number of agents; it is persistent -- the specification remains active until the user specifies a new command; and it is real-time -- the user can interact with and interrupt the swarm at any time. Moreover, we show that the spectral/ergodic specification of swarm behavior degrades gracefully as the number of agents goes down, enabling the operator to maintain the same approach as agents become disabled or are added to the network. We demonstrate the scale-invariance and dynamic response of our system in a field relevant simulator on a variety of tactical scenarios with up to 50 agents. We also demonstrate the dynamic response of our system in the field with a smaller team of agents. Lastly, we make the code for our system available.
translated by 谷歌翻译
行人安全是运输系统管理人员和运营商的优先事项,以及德克萨斯州奥斯汀市雇用的愿景零策略的主要重点。虽然有许多治疗和技术能够有效地提高行人安全性,但识别这些治疗最需要的位置仍然是一个挑战。当前的实践需要手动观察候选位置进行有限的时间段,导致识别过程是耗时的,随着时间的推移,交通模式的滞后,缺乏可扩展性。中间块位置,通常需要安全对策,特别是难以识别和监控。该研究的目标是了解公交车站位置和中块交叉路口之间的相关性,以帮助交通工程师实施视觉零策略以提高行人安全性。在事先工作中,我们开发了一种使用深度神经网络模型来检测交通摄像机视频的行人交叉事件,以识别交叉事件。在本文中,我们扩展了使用在附近的交叉口的货架上的CCTV PAN- TILT-ZOOM(PTZ)流量监控摄像机中使用交通摄像机视频识别总线停止使用的方法。我们将视频检测结果与巴士站附近的中间块交叉相关联,在中间块交叉的每一侧的公共汽车上的行人活动。我们还通过自动创建仅显示交叉事件的视频剪辑自动化创建来促进人工活动检测的网络门户,从而大大提高人类审查过程的效率来促进人工活动检测。
translated by 谷歌翻译
Passive monitoring of acoustic or radio sources has important applications in modern convenience, public safety, and surveillance. A key task in passive monitoring is multiobject tracking (MOT). This paper presents a Bayesian method for multisensor MOT for challenging tracking problems where the object states are high-dimensional, and the measurements follow a nonlinear model. Our method is developed in the framework of factor graphs and the sum-product algorithm (SPA). The multimodal probability density functions (pdfs) provided by the SPA are effectively represented by a Gaussian mixture model (GMM). To perform the operations of the SPA in high-dimensional spaces, we make use of Particle flow (PFL). Here, particles are migrated towards regions of high likelihood based on the solution of a partial differential equation. This makes it possible to obtain good object detection and tracking performance even in challenging multisensor MOT scenarios with single sensor measurements that have a lower dimension than the object positions. We perform a numerical evaluation in a passive acoustic monitoring scenario where multiple sources are tracked in 3-D from 1-D time-difference-of-arrival (TDOA) measurements provided by pairs of hydrophones. Our numerical results demonstrate favorable detection and estimation accuracy compared to state-of-the-art reference techniques.
translated by 谷歌翻译
Location-aware networks will introduce new services and applications for modern convenience, surveillance, and public safety. In this paper, we consider the problem of cooperative localization in a wireless network where the position of certain anchor nodes can be controlled. We introduce an active planning method that aims at moving the anchors such that the information gain of future measurements is maximized. In the control layer of the proposed method, control inputs are calculated by minimizing the traces of approximate inverse Bayesian Fisher information matrixes (FIMs). The estimation layer computes estimates of the agent states and provides Gaussian representations of marginal posteriors of agent positions to the control layer for approximate Bayesian FIM computations. Based on a cost function that accumulates Bayesian FIM contributions over a sliding window of discrete future timesteps, a receding horizon (RH) control is performed. Approximations that make it possible to solve the resulting tree-search problem efficiently are also discussed. A numerical case study demonstrates the intelligent behavior of a single controlled anchor in a 3-D scenario and the resulting significantly improved localization accuracy.
translated by 谷歌翻译
Knowledge distillation (KD) has gained a lot of attention in the field of model compression for edge devices thanks to its effectiveness in compressing large powerful networks into smaller lower-capacity models. Online distillation, in which both the teacher and the student are learning collaboratively, has also gained much interest due to its ability to improve on the performance of the networks involved. The Kullback-Leibler (KL) divergence ensures the proper knowledge transfer between the teacher and student. However, most online KD techniques present some bottlenecks under the network capacity gap. By cooperatively and simultaneously training, the models the KL distance becomes incapable of properly minimizing the teacher's and student's distributions. Alongside accuracy, critical edge device applications are in need of well-calibrated compact networks. Confidence calibration provides a sensible way of getting trustworthy predictions. We propose BD-KD: Balancing of Divergences for online Knowledge Distillation. We show that adaptively balancing between the reverse and forward divergences shifts the focus of the training strategy to the compact student network without limiting the teacher network's learning process. We demonstrate that, by performing this balancing design at the level of the student distillation loss, we improve upon both performance accuracy and calibration of the compact student network. We conducted extensive experiments using a variety of network architectures and show improvements on multiple datasets including CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet. We illustrate the effectiveness of our approach through comprehensive comparisons and ablations with current state-of-the-art online and offline KD techniques.
translated by 谷歌翻译
Dense prediction tasks such as segmentation and detection of pathological entities hold crucial clinical value in the digital pathology workflow. However, obtaining dense annotations on large cohorts is usually tedious and expensive. Contrastive learning (CL) is thus often employed to leverage large volumes of unlabeled data to pre-train the backbone network. To boost CL for dense prediction, some studies have proposed variations of dense matching objectives in pre-training. However, our analysis shows that employing existing dense matching strategies on histopathology images enforces invariance among incorrect pairs of dense features and, thus, is imprecise. To address this, we propose a precise location-based matching mechanism that utilizes the overlapping information between geometric transformations to precisely match regions in two augmentations. Extensive experiments on two pretraining datasets (TCGA-BRCA, NCT-CRC-HE) and three downstream datasets (GlaS, CRAG, BCSS) highlight the superiority of our method in semantic and instance segmentation tasks. Our method outperforms previous dense matching methods by up to 7.2 % in average precision for detection and 5.6 % in average precision for instance segmentation tasks. Additionally, by using our matching mechanism in the three popular contrastive learning frameworks, MoCo-v2, VICRegL and ConCL, the average precision in detection is improved by 0.7 % to 5.2 % and the average precision in segmentation is improved by 0.7 % to 4.0 %, demonstrating its generalizability.
translated by 谷歌翻译
The proliferation of automatic faithfulness metrics for summarization has produced a need for benchmarks to evaluate them. While existing benchmarks measure the correlation with human judgements of faithfulness on model-generated summaries, they are insufficient for diagnosing whether metrics are: 1) consistent, i.e., decrease as errors are introduced into a summary, 2) effective on human-written texts, and 3) sensitive to different error types (as summaries can contain multiple errors). To address these needs, we present a benchmark of unfaithful minimal pairs (BUMP), a dataset of 889 human-written, minimally different summary pairs, where a single error (from an ontology of 7 types) is introduced to a summary from the CNN/DailyMail dataset to produce an unfaithful summary. We find BUMP complements existing benchmarks in a number of ways: 1) the summaries in BUMP are harder to discriminate and less probable under SOTA summarization models, 2) BUMP enables measuring the consistency of metrics, and reveals that the most discriminative metrics tend not to be the most consistent, 3) BUMP enables the measurement of metrics' performance on individual error types and highlights areas of weakness for future work.
translated by 谷歌翻译
Algorithmic solutions for multi-object tracking (MOT) are a key enabler for applications in autonomous navigation and applied ocean sciences. State-of-the-art MOT methods fully rely on a statistical model and typically use preprocessed sensor data as measurements. In particular, measurements are produced by a detector that extracts potential object locations from the raw sensor data collected for a discrete time step. This preparatory processing step reduces data flow and computational complexity but may result in a loss of information. State-of-the-art Bayesian MOT methods that are based on belief propagation (BP) systematically exploit graph structures of the statistical model to reduce computational complexity and improve scalability. However, as a fully model-based approach, BP can only provide suboptimal estimates when there is a mismatch between the statistical model and the true data-generating process. Existing BP-based MOT methods can further only make use of preprocessed measurements. In this paper, we introduce a variant of BP that combines model-based with data-driven MOT. The proposed neural enhanced belief propagation (NEBP) method complements the statistical model of BP by information learned from raw sensor data. This approach conjectures that the learned information can reduce model mismatch and thus improve data association and false alarm rejection. Our NEBP method improves tracking performance compared to model-based methods. At the same time, it inherits the advantages of BP-based MOT, i.e., it scales only quadratically in the number of objects, and it can thus generate and maintain a large number of object tracks. We evaluate the performance of our NEBP approach for MOT on the nuScenes autonomous driving dataset and demonstrate that it has state-of-the-art performance.
translated by 谷歌翻译
Recent advances in safety-critical risk-aware control are predicated on apriori knowledge of the disturbances a system might face. This paper proposes a method to efficiently learn these disturbances online, in a risk-aware context. First, we introduce the concept of a Surface-at-Risk, a risk measure for stochastic processes that extends Value-at-Risk -- a commonly utilized risk measure in the risk-aware controls community. Second, we model the norm of the state discrepancy between the model and the true system evolution as a scalar-valued stochastic process and determine an upper bound to its Surface-at-Risk via Gaussian Process Regression. Third, we provide theoretical results on the accuracy of our fitted surface subject to mild assumptions that are verifiable with respect to the data sets collected during system operation. Finally, we experimentally verify our procedure by augmenting a drone's controller and highlight performance increases achieved via our risk-aware approach after collecting less than a minute of operating data.
translated by 谷歌翻译
Importance: Social determinants of health (SDOH) are known to be associated with increased risk of suicidal behaviors, but few studies utilized SDOH from unstructured electronic health record (EHR) notes. Objective: To investigate associations between suicide and recent SDOH, identified using structured and unstructured data. Design: Nested case-control study. Setting: EHR data from the US Veterans Health Administration (VHA). Participants: 6,122,785 Veterans who received care in the US VHA between October 1, 2010, and September 30, 2015. Exposures: Occurrence of SDOH over a maximum span of two years compared with no occurrence of SDOH. Main Outcomes and Measures: Cases of suicide deaths were matched with 4 controls on birth year, cohort entry date, sex, and duration of follow-up. We developed an NLP system to extract SDOH from unstructured notes. Structured data, NLP on unstructured data, and combining them yielded seven, eight and nine SDOH respectively. Adjusted odds ratios (aORs) and 95% confidence intervals (CIs) were estimated using conditional logistic regression. Results: In our cohort, 8,821 Veterans committed suicide during 23,725,382 person-years of follow-up (incidence rate 37.18 /100,000 person-years). Our cohort was mostly male (92.23%) and white (76.99%). Across the six common SDOH as covariates, NLP-extracted SDOH, on average, covered 84.38% of all SDOH occurrences. All SDOH, measured by structured data and NLP, were significantly associated with increased risk of suicide. The SDOH with the largest effects was legal problems (aOR=2.67, 95% CI=2.46-2.89), followed by violence (aOR=2.26, 95% CI=2.11-2.43). NLP-extracted and structured SDOH were also associated with suicide. Conclusions and Relevance: NLP-extracted SDOH were always significantly associated with increased risk of suicide among Veterans, suggesting the potential of NLP in public health studies.
translated by 谷歌翻译