展示了在欧洲生物安全卓越网络框架内设计和获取的新的多模态生物识别数据库。它由600多个个人在三种情况下在三种情况下获得:1)在互联网上,2)在带台式PC的办公环境中,以及3)在室内/室外环境中,具有移动便携式硬件。这三种方案包括音频/视频数据的共同部分。此外,已使用桌面PC和移动便携式硬件获取签名和指纹数据。此外,使用桌面PC在第二个方案中获取手和虹膜数据。收购事项已于11名欧洲机构进行。 BioSecure多模式数据库(BMDB)的其他功能有:两个采集会话,在某些方式的几种传感器,均衡性别和年龄分布,多式化现实情景,每种方式,跨欧洲多样性,人口统计数据的可用性,以及人口统计数据的可用性与其他多模式数据库的兼容性。 BMDB的新型收购条件允许我们对单币或多模式生物识别系统进行新的具有挑战性的研究和评估,如最近的生物安全的多模式评估活动。还给出了该活动的描述,包括来自新数据库的单个模式的基线结果。预计数据库将通过2008年通过生物安全协会进行研究目的
translated by 谷歌翻译
指纹验证中的一个开放问题是对图像质量退化的鲁棒性缺乏鲁棒性。质量差的图像导致虚假且缺失的功能,从而降低整体系统的性能。因此,对于指纹识别系统非常重要,以估计捕获的指纹图像的质量和有效性。在这项工作中,我们审查了现有的指纹图像质量估算方法,包括发表措施背后的理由,以及在不同质量条件下显示其行为的视觉示例。我们还测试了一系列指纹图像质量估计算法。对于实验,我们雇用BioSec多模态基线语料库,其中包括在两个与三个不同传感器中获取的200个个人的19200个指纹图像。比较所选质量措施的行为,在大多数情况下显示它们之间的高相关性。还研究了低质量样本在验证性能中的影响,也是广泛可用的小型指纹匹配系统。
translated by 谷歌翻译
极化成像已应用于越来越多的机器人视觉应用中(例如,水下导航,眩光去除,脱落,对象分类和深度估计)。可以在市场RGB极化摄像机上找到可以在单个快照中捕获颜色和偏振状态的摄像头。由于传感器的特性分散和镜头的使用,至关重要的是校准这些类型的相机以获得正确的极化测量。到目前为止开发的校准方法要么不适合这种类型的相机,要么需要在严格的设置中进行复杂的设备和耗时的实验。在本文中,我们提出了一种新方法来克服对复杂的光学系统有效校准这些相机的需求。我们表明,所提出的校准方法具有多个优点,例如任何用户都可以使用统一的线性极化光源轻松校准相机,而无需任何先验地了解其偏振状态,并且收购数量有限。我们将公开提供校准代码。
translated by 谷歌翻译
在本文中,我们的目标是在测试时调整预训练的卷积神经网络对域的变化。我们在没有标签的情况下,不断地使用传入的测试批次流。现有文献主要是基于通过测试图像的对抗扰动获得的人工偏移。在此激励的情况下,我们在域转移的两个现实和挑战的来源(即背景和语义转移)上评估了艺术的状态。上下文移动与环境类型相对应,例如,在室内上下文上预先训练的模型必须适应Core-50上的户外上下文[7]。语义转移对应于捕获类型,例如,在自然图像上预先训练的模型必须适应域网上的剪贴画,草图和绘画[10]。我们在分析中包括了最近的技术,例如预测时间批归一化(BN)[8],测试熵最小化(帐篷)[16]和持续的测试时间适应(CottA)[17]。我们的发现是三个方面的:i)测试时间适应方法的表现更好,并且与语义转移相比,在上下文转移方面忘记了更少的忘记,ii)帐篷在短期适应方面的表现优于其他方法,而Cotta则超过了其他关于长期适应的方法, iii)bn是最可靠和强大的。
translated by 谷歌翻译
在本文中,我们介绍了e-genia3代理商的扩展,以为移情剂的发展提供支持。新扩展程序修改了代理商的推理过程,以根据分析事件以及代理商的情感状态和个性选择计划。此外,我们的建议允许软件代理通过两个不同的事件评估过程模拟自我和其他代理之间的区别:移情评估过程,以使情绪作为对其他代理情绪的反应以及其他非情感评估过程的反应,并为其他非情感评估过程 - 同情情感事件。移情调节过程适应了基于人际因素(例如,代理人的人格和情感记忆)和代理人的人际特征(例如,代理人之间的情感联系),适应引起的同理心情绪。使用过去事件的记忆及其相应的引起的情绪,可以保持情感联系,以支持代理之间的长期移情互动。
translated by 谷歌翻译
比较不同的汽车框架是具有挑战性的,并且经常做错了。我们引入了一个开放且可扩展的基准测试,该基准遵循最佳实践,并在比较自动框架时避免常见错误。我们对71个分类和33项回归任务进行了9个著名的自动框架进行了详尽的比较。通过多面分析,评估模型的准确性,与推理时间的权衡以及框架失败,探索了自动框架之间的差异。我们还使用Bradley-terry树来发现相对自动框架排名不同的任务子集。基准配备了一个开源工具,该工具与许多自动框架集成并自动化经验评估过程端到端:从框架安装和资源分配到深入评估。基准测试使用公共数据集,可以轻松地使用其他Automl框架和任务扩展,并且具有最新结果的网站。
translated by 谷歌翻译
机器学习(ML)研究通常集中在模型上,而最突出的数据集已用于日常的ML任务,而不考虑这些数据集对基本问题的广度,困难和忠诚。忽略数据集的基本重要性已引起了重大问题,该问题涉及现实世界中的数据级联以及数据集驱动标准的模型质量饱和,并阻碍了研究的增长。为了解决此问题,我们提出Dataperf,这是用于评估ML数据集和数据集工作算法的基准软件包。我们打算启用“数据棘轮”,其中培训集将有助于评估相同问题的测试集,反之亦然。这种反馈驱动的策略将产生一个良性的循环,该循环将加速以数据为中心的AI。MLCommons协会将维护Dataperf。
translated by 谷歌翻译
提出了一种生成软糖手指的新方法。描述了一个中型的假指纹数据库,并在其上评估了两个不同的指纹验证系统。实验中考虑了三种不同的情况,即:使用真实的指纹注册和测试,用假指纹进行注册和测试,以及带有真实指纹的注册,并用假指纹进行测试。给出了光学和热扫描传感器的结果。两种系统都被证明容易受到直接攻击。
translated by 谷歌翻译
教机器人通过加强学习(RL)在复杂的三维环境环境下学习多样化的运动技能仍然具有挑战性。已经表明,在将其转移到复杂设置之前,在简单设置中的培训代理可以改善培训过程,但到目前为止,仅在相对简单的运动技能的背景下。在这项工作中,我们适应了增强的配对开放式开拓者(EPOET)方法,以训练更复杂的代理,以在复杂的三维地形上有效行走。首先,为了产生更加坚固且多样化的三维训练地形,并增加了复杂性,我们扩展了组成模式产生的网络 - 增强拓扑的神经进化(CPPN-NEAT)方法,并包括随机形状。其次,我们将Epoet与软性演员 - 批评外的优化相结合,产生Epoet-SAC,以确保代理商可以学习更多多样化的技能,以解决更具挑战性的任务。我们的实验结果表明,新生成的三维地形具有足够的多样性和复杂性来指导学习,Epoet成功地学习了这些地形上的复杂运动技能,并且我们提出的EPOET-SAC方法在Epoet上略有改进。
translated by 谷歌翻译
强化学习和最近的深度增强学习是解决如Markov决策过程建模的顺序决策问题的流行方法。问题和选择算法和超参数的RL建模需要仔细考虑,因为不同的配置可能需要完全不同的性能。这些考虑因素主要是RL专家的任务;然而,RL在研究人员和系统设计师不是RL专家的其他领域中逐渐变得流行。此外,许多建模决策,例如定义状态和动作空间,批次的大小和批量更新的频率以及时间戳的数量通常是手动进行的。由于这些原因,RL框架的自动化不同组成部分具有重要意义,近年来它引起了很多关注。自动RL提供了一个框架,其中RL的不同组件包括MDP建模,算法选择和超参数优化是自动建模和定义的。在本文中,我们探讨了可以在自动化RL中使用的文献和目前的工作。此外,我们讨论了Autorl中的挑战,打开问题和研究方向。
translated by 谷歌翻译