通常,基于生物谱系的控制系统可能不依赖于各个预期行为或合作适当运行。相反,这种系统应该了解未经授权的访问尝试的恶意程序。文献中提供的一些作品建议通过步态识别方法来解决问题。这些方法旨在通过内在的可察觉功能来识别人类,尽管穿着衣服或配件。虽然该问题表示相对长时间的挑战,但是为处理问题的大多数技术存在与特征提取和低分类率相关的几个缺点,以及其他问题。然而,最近的深度学习方法是一种强大的一组工具,可以处理几乎任何图像和计算机视觉相关问题,为步态识别提供最重要的结果。因此,这项工作提供了通过步态认可的关于生物识别检测的最近作品的调查汇编,重点是深入学习方法,强调他们的益处,暴露出弱点。此外,它还呈现用于解决相关约束的数据集,方法和体系结构的分类和表征描述。
translated by 谷歌翻译
使用卷积神经网络(CNN)已经显着改善了几种图像处理任务,例如图像分类和对象检测。与Reset和Abseralnet一样,许多架构在创建时至少在一个数据集中实现了出色的结果。培训的一个关键因素涉及网络的正规化,这可以防止结构过度装备。这项工作分析了在过去几年中开发的几种正规化方法,显示了不同CNN模型的显着改进。该作品分为三个主要区域:第一个称为“数据增强”,其中所有技术都侧重于执行输入数据的更改。第二个,命名为“内部更改”,旨在描述修改神经网络或内核生成的特征映射的过程。最后一个称为“标签”,涉及转换给定输入的标签。这项工作提出了与关于正则化的其他可用调查相比的两个主要差异:(i)第一个涉及在稿件中收集的论文并非超过五年,并第二个区别是关于可重复性,即所有作品此处推荐在公共存储库中可用的代码,或者它们已直接在某些框架中实现,例如Tensorflow或Torch。
translated by 谷歌翻译
本文介绍了一个模糊认知地图模型,用于量化结构化数据集中的隐式偏置,其中特征可以是数字或离散的。在我们的建议中,问题特征被映射到在运行什么时专家最初由专家激活的神经概念,而连接神经概念的权重表示特征之间的绝对相关/关联模式。此外,我们介绍一种配备的新推理机制,配备有标准化的转移功能,可防止神经元饱和。这种新推理机制的另一个优点是它可以通过在更新每个迭代中的神经元激活值时来调节非线性来容易地控制。最后,我们研究了我们模型的融合和源于定点吸引子的存在和单性的分析条件。
translated by 谷歌翻译
在产生复杂结构(例如化学元件和分子)的粒子相互作用中可以广泛看到自组织的新兴模式。受这些互动的启发,这项工作提出了一种新颖的随机方法,该方法使一群异质机器人以完全分散的方式创建新兴的模式,并且仅依靠本地信息。我们的方法包括将群构型建模为动态吉布斯随机场(GRF),并在受到化学规则启发的邻域系统上的设置约束,这些规则决定了粒子之间的结合极性。使用GRF模型,我们确定每个机器人的速度,从而导致导致图案或形状创建的行为。模拟实验显示了该方法在产生多种模式中的多功能性,并且使用一组物理机器人的实验显示了潜在应用中的可行性。
translated by 谷歌翻译
在过去的十年中,在杂交无人驾驶空中水下车辆的研究中努力,机器人可以轻松飞行和潜入水中的机械适应水平。然而,大多数文献集中在物理设计,建筑物的实际问题上,最近,低水平的控制策略。在高级情报的背景下,如运动规划和与现实世界的互动的情况下已经完成。因此,我们在本文中提出了一种轨迹规划方法,允许避免避免未知的障碍和空中媒体之间的平滑过渡。我们的方法基于经典迅速探索随机树的变体,其主要优点是处理障碍,复杂的非线性动力学,模型不确定性和外部干扰的能力。该方法使用\ Hydrone的动态模型,提出具有高水下性能的混合动力车辆,但我们认为它可以很容易地推广到其他类型的空中/水生平台。在实验部分中,我们在充满障碍物的环境中显示了模拟结果,其中机器人被命令执行不同的媒体运动,展示了我们的策略的适用性。
translated by 谷歌翻译
本文介绍了一种新型深度加强基于基于深度加强学习的3D Fapless导航系统(无人机)。我们提出了一个简单的学习系统,而不是使用一种简单的学习系统,该系统仅使用来自距离传感器的一些稀疏范围数据来训练学习代理。我们基于我们对两种最先进的双重评论家深度RL模型的方法:双延迟深度确定性政策梯度(TD3)和软演员 - 评论家(SAC)。我们表明,我们的两种方法可以基于深度确定性政策梯度(DDPG)技术和Bug2算法来胜过一种方法。此外,我们基于经常性神经网络(RNNS)的新的深度RL结构优于用于执行移动机器人的FAPLESS导航的当前结构。总体而言,我们得出结论,基于双重评论评价的深度RL方法与经常性神经网络(RNNS)更适合进行熔化的导航和避免无人机。
translated by 谷歌翻译
我们表明,在随机林的培训过程下面,不仅存在众所周知的和几乎计算的释放速度超出袋点估计,而且还有一个路径来计算概念误差的置信区间要求再培训森林或任何形式的数据分裂。除了施工中涉及的低计算成本外,通过模拟显示这种置信区间,以在训练样本大小方面具有良好的覆盖率和适当的收缩速度。
translated by 谷歌翻译
我们的目标是讨论其在其理论和实践术语中讨论了强化的计划,指出了在讨论计算模拟的优势的同时实施这些时间表的实际限制。在本文中,我们展示了一个名为喙的R脚本,建立了模拟与加固时间表交互的行为速率。使用喙,我们已经模拟了允许评估不同强化反馈功能(RFF)的数据。这是通过无与伦比的精确度制作的,因为模拟提供了巨大的数据样本,更重要的是,它产生的加强不会改变模拟行为。因此,我们可以系统地改变它。我们将不同的RFF与RI​​时间表进行了比较,用作标准:意义,精确,分析和一般性。我们的结果表明,RI计划的最佳反馈函数由BAUM(1981)公布。我们还建议Killeen(1975)使用的模型是RDRL计划的可行反馈函数。我们认为喙铺平了更多了解加强时间表,解决了关于时间表的定量特征的开放问题。此外,他们可以指导将来使用时间表作为理论和方法工具的实验。
translated by 谷歌翻译
对于人工智能在生物学和药物中产生更大的影响,这是一个至关重要的是,建议都是准确和透明的。在其他域中,已经显示了关于知识图表的多跳推理的神经统计学方法,以产生透明的解释。然而,缺乏研究将其应用于复杂的生物医学数据集和问题。在本文中,探讨了药物发现的方法,以利用其适用性的稳定结论。我们首次系统地将其应用于多种生物医学数据集和具有公平基准比较的推荐任务。发现该方法以平均水平的21.7%优于21.7%,同时产生新颖,生物学相关的解释。
translated by 谷歌翻译
In recent years, numerous machine learning models which attempt to solve polypharmacy side effect identification, drug-drug interaction prediction and combination therapy design tasks have been proposed. Here, we present a unified theoretical view of relational machine learning models which can address these tasks. We provide fundamental definitions, compare existing model architectures and discuss performance metrics, datasets and evaluation protocols. In addition, we emphasize possible high impact applications and important future research directions in this domain.
translated by 谷歌翻译