现有的神经结构搜索算法主要在具有短距离连接的搜索空间上。我们争辩说,这种设计虽然安全稳定,障碍搜索算法从探索更复杂的情景。在本文中,我们在具有长距离连接的复杂搜索空间上构建搜索算法,并显示现有的权重共享搜索算法由于存在\ TextBF {交织连接}而大部分失败。基于观察,我们介绍了一个名为\ textbf {if-nas}的简单且有效的算法,在那里我们在搜索过程中执行定期采样策略来构建不同的子网,避免在任何中的交织连接出现。在所提出的搜索空间中,IF-NAS优于随机采样和先前的重量共享搜索算法,通过显着的余量。 IF-NAS还推广到微单元的空间,这些空间更容易。我们的研究强调了宏观结构的重要性,我们期待沿着这个方向进一步努力。
translated by 谷歌翻译
神经辐射场(NERF)在代表3D场景和合成新颖视图中示出了很大的潜力,但是在推理阶段的NERF的计算开销仍然很重。为了减轻负担,我们进入了NERF的粗细分,分层采样过程,并指出粗阶段可以被我们命名神经样本场的轻量级模块代替。所提出的示例场地图光线进入样本分布,可以将其转换为点坐标并进料到radiance字段以进行体积渲染。整体框架被命名为Neusample。我们在现实合成360 $ ^ {\ circ} $和真正的前瞻性,两个流行的3D场景集上进行实验,并表明Neusample在享受更快推理速度时比NERF实现更好的渲染质量。Neusample进一步压缩,以提出的样品场提取方法朝向质量和速度之间的更好的权衡。
translated by 谷歌翻译
在本文中,我们提出了一种自我监督的视觉表示学习方法,涉及生成和鉴别性代理,我们通过要求目标网络基于中级特征来恢复原始图像来专注于前者部分。与事先工作不同,主要侧重于原始和生成的图像之间的像素级相似性,我们提倡语义感知生成(Sage)以促进更丰富的语义,而不是在所生成的图像中保留的细节。实现SAGE的核心概念是使用评估者,一个在没有标签的情况下预先培训的深网络,用于提取语义感知功能。 Sage与特定于观点的功能补充了目标网络,从而减轻了密集数据增强所带来的语义劣化。我们在ImageNet-1K上执行Sage,并在包括最近的邻居测试,线性分类和细小图像识别的五个下游任务中评估预训练模型,展示了其学习更强大的视觉表示的能力。
translated by 谷歌翻译
变压器提供了一种设计神经网络以进行视觉识别的新方法。与卷积网络相比,变压器享有在每个阶段引用全局特征的能力,但注意模块带来了更高的计算开销,阻碍了变压器的应用来处理高分辨率的视觉数据。本文旨在减轻效率和灵活性之间的冲突,为此,我们为每个地区提出了专门的令牌,作为使者(MSG)。因此,通过操纵这些MSG令牌,可以在跨区域灵活地交换视觉信息,并且减少计算复杂性。然后,我们将MSG令牌集成到一个名为MSG-Transformer的多尺度体系结构中。在标准图像分类和对象检测中,MSG变压器实现了竞争性能,加速了GPU和CPU的推断。代码可在https://github.com/hustvl/msg-transformer中找到。
translated by 谷歌翻译
在本文中,我们专注于3D形式抽象和语义分析的两个任务。这与目前的方法形成对比,仅关注3D形状抽象或语义分析。此外,以前的方法难以产生实例级语义结果,其限制了它们的应用。我们提出了一种用于联合估计3D形式抽象和语义分析的新方法。我们的方法首先为3D形状产生许多3D语义候选区域;然后,我们采用这些候选者直接预测语义类别,并使用深卷积神经网络同时细化候选地区的参数。最后,我们设计一种融合预测结果并获得最终语义抽象的算法,该抽象被显示为对标准非最大抑制的改进。实验结果表明,我们的方法可以产生最先进的结果。此外,我们还发现我们的结果可以很容易地应用于实例级语义部分割和形状匹配。
translated by 谷歌翻译
类别不平衡发生在许多实际应用程序中,包括图像分类,其中每个类中的图像数量显着不同。通过不平衡数据,生成的对抗网络(GANS)倾向于多数类样本。最近的两个方法,平衡GaN(Bagan)和改进的Bagan(Bagan-GP)被提出为增强工具来处理此问题并将余额恢复到数据。前者以无人监督的方式预先训练自动化器权重。但是,当来自不同类别的图像具有类似的特征时,它是不稳定的。后者通过促进监督的自动化培训培训,基于蒲甘进行改善,但预先培训偏向于多数阶级。在这项工作中,我们提出了一种新颖的条件变形式自动化器,具有用于生成的对抗性网络(CAPAN)的平衡训练,作为生成现实合成图像的增强工具。特别是,我们利用条件卷积改变自动化器,为GaN初始化和梯度惩罚培训提供了监督和平衡的预培训。我们所提出的方法在高度不平衡版本的MNIST,时尚 - MNIST,CIFAR-10和两个医学成像数据集中呈现出卓越的性能。我们的方法可以在FR \'回路截止距离,结构相似性指数测量和感知质量方面综合高质量的少数民族样本。
translated by 谷歌翻译
利用深度学习的水提取需要精确的像素级标签。然而,在像素级别标记高分辨率遥感图像非常困难。因此,我们研究如何利用点标签来提取水体并提出一种名为邻居特征聚合网络(NFANET)的新方法。与PixelLevel标签相比,Point标签更容易获得,但它们会失去许多信息。在本文中,我们利用了局部水体的相邻像素之间的相似性,并提出了邻居采样器来重塑遥感图像。然后,将采样的图像发送到网络以进行特征聚合。此外,我们使用改进的递归训练算法进一步提高提取精度,使水边界更加自然。此外,我们的方法利用相邻特征而不是全局或本地特征来学习更多代表性。实验结果表明,所提出的NFANET方法不仅优于其他研究的弱监管方法,而且还获得与最先进的结果相似。
translated by 谷歌翻译
磁共振成像(MRI)是一种重要的非侵入性临床工具,可以产生高分辨率和可重复的图像。然而,高质量的MR图像需要长时间的扫描时间,这导致患者的疲惫和不适,由于患者的自愿运动和非自愿的生理运动,诱导更多人工制品。为了加速扫描过程,通过K空间欠采样和基于深度学习的重建的方法已经推广。这项工作引进了SwinMR,这是一种基于新型的Swin变压器的快速MRI重建方法。整个网络由输入模块(IM)组成,特征提取模块(FEM)和输出模块(OM)。 IM和OM是2D卷积层,并且FEM由级联的残留的Swin变压器块(RSTBS)和2D卷积层组成。 RSTB由一系列SWIN变压器层(STL)组成。 STL的Shifted Windows多头自我关注(W-MSA / SW-MSA)在移位的窗口中执行,而不是整个图像空间中原始变压器的多头自我关注(MSA)。通过使用灵敏度图提出了一种新的多通道损耗,这被证明是为了保留更多纹理和细节。我们在Calgary-Campinas公共大脑MR DataSet中进行了一系列比较研究和消融研究,并在多模态脑肿瘤细分挑战2017年数据集中进行了下游分段实验。结果表明,与其他基准方法相比,我们的SwinMR实现了高质量的重建,并且它在噪音中断和不同的数据集中显示了不同的遮光罩掩模的稳健性。该代码在https://github.com/ayanglab/swinmr公开使用。
translated by 谷歌翻译
在统计和机器学习中具有重尾数据的模型开发强大的估计估计兴趣兴趣。本文提出了一个用于大家庭统计回归的日志截断的M估计,并在数据具有$ \ varepsilon \中的数据(0,1] $。随着相关风险函数的额外假设,我们获得了估计的$ \ ell_2 $ -Error绑定。我们的定理应用于建立具体回归的强大M估计。除了凸面回归等分位数回归之外广义线性模型,许多非凸回归也可以符合我们的定理,我们专注于强大的深度神经网络回归,这可以通过随机梯度下降算法解决。模拟和实际数据分析证明了日志截断估计的优越性超过标准估计。
translated by 谷歌翻译
联合学习是一种流行的技术,用于在不共享数据的情况下培训分布式数据源上的机器学习模型。基于垂直的联合学习或基于功能的联合学习适用于不同数据源共享相同的样本ID空间但在特征空间中不同的情况。为了确保数据所有者的长期参与,客观地评估每个数据源的贡献并相应地汇总贡献至关重要。福利价值(SV)是源自合作博弈论的可怕公平贡献估值指标。然而,计算SV需要在数据源的每个子集中广泛地重新培训模型,这导致联合学习中的高通信成本。我们提出了一种基于SV的垂直联合福利价值(VerfedSv)的贡献估值度量。我们表明Verfedsv不仅满足了公平性的许多理想的属性,而且还有效地计算,并且可以适用于同步和异步垂直联合学习算法。理论分析和广泛的实验结果均验证了Verfedsv的公平性,效率和适应性。
translated by 谷歌翻译