以在线方式进行功能选择的在线流媒体特征选择(OSFS)在处理高维数据方面起着重要作用。在许多真实的应用程序(例如智能医疗平台)中,流媒体功能始终存在一些缺少的数据,这在进行OSFS(即如何在稀疏流式传输功能和标签之间建立不确定的关系)方面提出了至关重要的挑战。不幸的是,现有的OSFS算法从未考虑过这种不确定的关系。为了填补这一空白,我们在本文中提出了一个不确定性(OS2FSU)算法的在线稀疏流媒体特征选择。 OS2FSU由两个主要部分组成:1)潜在因素分析用于预测稀疏流特征中缺少的数据,然后使用划分功能选择,而2)使用模糊逻辑和邻里粗糙集来减轻估计流流之间的不确定性进行功能选择期间的功能和标签。在实验中,将OS2FSU与六个真实数据集中的五种最先进的OSFS算法进行了比较。结果表明,在OSF中遇到丢失的数据时,OS2FSU胜过其竞争对手。
translated by 谷歌翻译
视频框架插值是一项经典且具有挑战性的低级计算机视觉任务。最近,基于深度学习的方法取得了令人印象深刻的结果,并且已证明基于光流的方法可以合成具有更高质量的帧。但是,大多数基于流动的方法都假设两个输入帧之间具有恒定速度的线轨迹。只有一点点工作可以使用曲线轨迹执行预测,但这需要两个以上的框架作为输入来估计加速度,这需要更多的时间和内存才能执行。为了解决这个问题,我们提出了一个基于ARC轨迹的模型(ATCA),该模型仅从连续两个帧中就可以在前学习运动,而且轻量级。实验表明,我们的方法的性能要比许多参数较少且推理速度更快的SOTA方法更好。
translated by 谷歌翻译
计算机辅助诊断(CAD)系统可以为皮肤病的临床诊断提供参考。卷积神经网络(CNN)不仅可以提取视觉元素,例如颜色和形状,而且还可以提取语义特征。因此,他们在皮肤镜检查图像的许多任务中取得了重大改进。皮肤镜检查的成像没有主要方向,表明数据集中有大量的皮肤病变靶旋转。然而,CNN缺乏抗旋转能力,这必然会影响CNN的特征提取能力。我们提出了一个旋转平均值(RM)网络,以从皮肤镜图像中提取旋转不变性特征。在RM中,每组旋转的特征地图对应于一组重量共享卷积输出,并使用MeanOut操作融合以获取最终特征图。通过理论推导,提出的RM网络是旋转等值的,并且在全球平均池(GAP)操作之后,可以提取旋转不变的特征。提取的旋转不变特征可以更好地代表皮肤镜图像的分类和检索任务中的原始数据。提出的RM是一般操作,它不会改变网络结构或增加任何参数,并且可以灵活地嵌入CNN的任何部分。大量实验是在皮肤镜检查图像数据集上进行的。结果表明,我们的方法优于其他抗旋转方法,并在皮肤镜检查图像分类和检索任务方面取得了重大改进,表明在皮肤镜图像领域旋转不变性的潜力。
translated by 谷歌翻译
面部表达是传达人类情绪状态和意图的重要因素。尽管在面部表达识别任务(FER)任务中已经取得了显着进步,但由于表达模式的巨大变化和不可避免的数据不确定性而引起的挑战仍然存在。在本文中,我们提出了中级表示增强(MRE)和嵌入图形抑制(GUS)的图表,以解决这些问题。一方面,引入MRE是为了避免表达表示学习以有限数量的高度歧视模式主导。另一方面,引入GUS以抑制表示空间中的特征歧义。所提出的方法不仅具有更强的概括能力来处理表达模式的不同变化,而且具有更强的稳健性来捕获表达表示。对AFF-WILD2的实验评估已验证了该方法的有效性。
translated by 谷歌翻译
旨在预测人们对不同视觉刺激的情绪的视觉情感分析(VEA)最近已成为一个有吸引力的研究主题。而不是单个标签分类任务,而是通过向不同个人投票将VEA视为标签分布学习(LDL)问题是更合理的。现有方法通常可以预测统一网络中的视觉情绪分布,从而忽略了人群投票过程中的固有主观性。在心理学中,\ textit {object-appraiSal-emotion}模型表明,每个人的情绪都受到主观评估的影响,这是由情感记忆进一步形成的。受此启发,我们提出了一个新颖的\ textit {主观性评估和匹配网络(SAMNET)},以研究视觉情感分布中的主观性。为了描述人群投票过程中的多样性,我们首先提出了\ textit {主观性评估},其中每个分支都模拟了特定个人的情感唤起过程。具体而言,我们使用基于注意力的机制来构建情感记忆,以保护每个人的独特情感体验。进一步提出了主观性损失,以确保不同个体之间的差异。此外,我们提出了\ textit {主观性匹配},旨在将无序的情感标签分配给与匈牙利算法一对一的对应关系中的单个预测。广泛的实验和比较是在公共视觉情绪分布数据集上进行的,结果表明,所提出的SAMNET始终优于最新方法。消融研究验证我们方法的有效性,可视化证明了其可解释性。
translated by 谷歌翻译
终身学习旨在学习一系列任务,而无需忘记先前获得的知识。但是,由于隐私或版权原因,涉及的培训数据可能不是终身合法的。例如,在实际情况下,模型所有者可能希望不时启用或禁用特定任务或特定样本的知识。不幸的是,这种灵活的对知识转移的灵活控制在以前的增量或减少学习方法中,即使在问题设定的水平上也被忽略了。在本文中,我们探索了一种新颖的学习方案,称为学习,可回收遗忘(LIRF),该方案明确处理任务或特定于样本的知识去除和恢复。具体而言,LIRF带来了两个创新的方案,即知识存款和撤回,这使用户指定的知识从预先训练的网络中隔离开来,并在必要时将其注入。在知识存款过程中,从目标网络中提取了指定的知识并存储在存款模块中,同时保留了目标网络的不敏感或一般知识,并进一步增强。在知识提取期间,将带走知识添加回目标网络。存款和提取过程仅需在删除数据上对几个时期进行填充时期,从而确保数据和时间效率。我们在几个数据集上进行实验,并证明所提出的LIRF策略具有令人振奋的概括能力。
translated by 谷歌翻译
3D多对象跟踪旨在唯一,始终如一地识别所有移动实体。尽管在此设置中提供了丰富的时空信息,但当前的3D跟踪方法主要依赖于抽象的信息和有限的历史记录,例如单帧对象边界框。在这项工作中,我们开发了对交通场景的整体表示,该场景利用了现场演员的空间和时间信息。具体而言,我们通过将跟踪的对象表示为时空点和边界框的序列来重新将跟踪作为时空问题,并在悠久的时间历史上进行重新制定。在每个时间戳上,我们通过对对象历史记录的完整顺序进行的细化来改善跟踪对象的位置和运动估计。通过共同考虑时间和空间,我们的代表自然地编码了基本的物理先验,例如对象持久性和整个时间的一致性。我们的时空跟踪框架在Waymo和Nuscenes基准测试中实现了最先进的性能。
translated by 谷歌翻译
基于草图的3D形状检索(SBSR)是一项重要但艰巨的任务,近年来引起了越来越多的关注。现有方法在限制设置中解决了该问题,而无需适当模拟真实的应用程序方案。为了模仿现实的设置,在此曲目中,我们采用了不同级别的绘图技能的业余爱好者以及各种3D形状的大规模草图,不仅包括CAD型号,而且还可以从真实对象扫描的模型。我们定义了两个SBSR任务,并构建了两个基准,包括46,000多个CAD型号,1,700个现实型号和145,000个草图。四个团队参加了这一轨道,并为这两个任务提交了15次跑步,由7个常用指标评估。我们希望,基准,比较结果和开源评估法会在3D对象检索社区中促进未来的研究。
translated by 谷歌翻译
本文是第一个提供全面的系统设计概述以及融合方法选择标准的现实世界合作自动驾驶系统的选择标准,该标准为基础架构增强自主驾驶或IAAD。我们在路边和车辆侧计算和通信平台上介绍了IAAD硬件和软件的深入介绍。我们在现实部署方案的背景下广泛地表征了IAAD系统,并观察到沿着道路波动的网络状况是目前是合作自动驾驶的主要技术障碍。为了应对这一挑战,我们提出了新的融合方法,称为“框架间融合”和“计划融合”,以补充当前最新的“框架内融合”。我们证明,每种融合方法都有其自身的好处和约束。
translated by 谷歌翻译
了解公众关于紧急使用未经证实的治疗剂的论述对于监视安全使用和打击错误信息至关重要。我们开发了一种基于自然语言处理(NLP)的管道,以了解公众对COVID-19与19与COVID相关药物的立场的看法。这项回顾性研究包括2020年1月29日,2020年至2021年11月30日之间的609,189个基于美国的推文,涉及四种药物,这些药物在19日期期间在流行期间引起了广泛关注:1)羟基氯喹和伊维菌素,毒品疗法,具有轶事证据; 2)Molnupiravir和Remdesivir,适合合格患者的FDA批准的治疗选择。时间趋势分析用于了解受欢迎程度和相关事件。进行了内容和人口统计分析,以探讨人们对每种药物的立场的潜在理由。时间趋势分析表明,羟氯喹和伊维菌素的讨论比Molnupiravir和Remdesivir更多,尤其是在Covid-19-19潮中期。羟氯喹和伊维菌素高度政治化,与阴谋论,传闻,名人效应等有关。美国两个主要政党之间立场的分布大不相同(p <0.001);共和党人比民主党人更有可能支持羟氯喹(+55%)和伊维菌素(+30%)。具有医疗保健背景的人倾向于比普通人群多反对羟氯喹(+7%)。相比之下,普通人群更有可能支持伊维菌素(+14%)。我们在https://github.com/ningkko/covid-drug上提供所有数据,代码和模型。
translated by 谷歌翻译