我们建议一个基于深入强化学习的经理工作框架,以解决旅行推销员问题(TSP)的艰难而又非平凡的变体,\ ie〜有时间窗口和拒绝(MTSPTWR)的多车辆TSP(MTSPTWR),在此之前无法服务的客户截止日期将受到拒绝。特别是,在拟议的框架中,经理代理人通过基于图形同构网络(GIN)的策略网络将客户分配给每辆车,从而将MTSPTWR分为子路由任务。工人代理人通过根据每辆车的旅行长度和拒绝率来最大程度地降低成本来解决子路由任务,然后将其最多的最大值送回经理代理以学习更好的任务。实验结果表明,所提出的框架在更高的解决方案质量和较短的计算时间方面优于强基础。更重要的是,训练有素的代理商还取得了竞争性能,以解决看不见的较大实例。
translated by 谷歌翻译
常规的多视图聚类试图基于所有观点的假设,以完全观察到所有观点的假设。但是,在诸如疾病诊断,多媒体分析和建议系统之类的实际应用中,常见的是,在许多情况下,并非所有样品的观点都可以使用,这导致常规多视图聚类方法的失败。在此不完整的多视图数据上的聚类称为不完整的多视图聚类。鉴于有前途的应用前景,近年来对不完整的多视图聚类的研究取得了明显的进步。但是,没有调查可以总结当前的进展并指出未来的研究方向。为此,我们回顾了最新的关于多视图聚类的研究。重要的是,我们提供一些框架来统一相应的不完整的多视图聚类方法,并从理论和实验角度对某些代表性方法进行深入的比较分析。最后,为研究人员提供了不完整的多视图聚类领域中的一些开放问题。
translated by 谷歌翻译
旨在解决不完整的多视图数据中缺少部分视图的聚类问题的不完整的多视图聚类,近年来受到了越来越多的关注。尽管已经开发了许多方法,但大多数方法要么无法灵活地处理不完整的多视图数据,因此使用任意丢失的视图,或者不考虑视图之间信息失衡的负面因素。此外,某些方法并未完全探索所有不完整视图的局部结构。为了解决这些问题,本文提出了一种简单但有效的方法,称为局部稀疏不完整的多视图聚类(LSIMVC)。与现有方法不同,LSIMVC打算通过优化一个稀疏的正则化和新颖的图形嵌入式多视图矩阵分数模型来从不完整的多视图数据中学习稀疏和结构化的潜在表示。具体而言,在基于矩阵分解的这种新型模型中,引入了基于L1规范的稀疏约束,以获得稀疏的低维单个表示和稀疏共识表示。此外,引入了新的本地图嵌入项以学习结构化共识表示。与现有作品不同,我们的本地图嵌入术语汇总了图形嵌入任务和共识表示任务中的简洁术语。此外,为了减少多视图学习的不平衡因素,将自适应加权学习方案引入LSIMVC。最后,给出了有效的优化策略来解决我们提出的模型的优化问题。在六个不完整的多视图数据库上执行的全面实验结果证明,我们的LSIMVC的性能优于最新的IMC方法。该代码可在https://github.com/justsmart/lsimvc中找到。
translated by 谷歌翻译
本文研究了一个新的多设备边缘人工智能(AI)系统,该系统共同利用AI模型分配推理和集成感应和通信(ISAC),以在网络边缘启用低延迟智能服务。在此系统中,多个ISAC设备执行雷达传感以获取多视图数据,然后将提取功能的量化版本卸载到集中式边缘服务器,该功能基于级联功能向量进行模型推断。在此设置和考虑分类任务下,我们通过采用近似但可拖动的度量,即判别增益来衡量推理的准确性,该指标定义为在归一化协方差下欧几里得特征空间中两个类别的距离。为了最大化判别增益,我们首先用衍生的封闭形式表达来量化感应,计算和通信过程的影响。然后,通过将这三个过程集成到联合设计中来开发面向任务的端到端资源管理方法。然而,这种集成的感应,计算和通信(ISCC)设计方法然而,由于判别增益的复杂形式和设备异质性在渠道增益,量化水平和生成的功能方面,导致了具有挑战性的非凸优化问题子集。值得注意的是,可以根据比率方法来最佳解决所考虑的非凸问题。这给出了最佳ISCC方案,该方案共同确定多个设备的传输功率和时间分配,以进行传感和通信,以及它们的量化位分配以进行计算失真控制。通过将人类运动识别作为具体的AI推理任务,进行了广泛的实验来验证我们衍生的最佳ISCC方案的性能。
translated by 谷歌翻译
K-Core Deconnosition是一个常用的指标来分析图形结构或研究节点在复杂图中的相对重要性。近年来,图表的规模迅速增长,特别是在工业环境中。例如,我们的工业伙伴以数十亿用户运行流行的社交应用程序,并且能够收集丰富的用户数据。因此,对大型图形的k核分解应用于学术界和行业的越来越多的关注。处理大图的简单但有效的方法是在分布式设置中训练它们,并且还提出了一些分布式k核分解算法。尽管他们有效性,我们在实验和理论上观察到这些算法消耗了太多资源,并在超大型图表上变得不稳定,特别是当给定的资源有限时。在本文中,我们处理那些超大型图形,并在分布式K核分解算法的顶部提出了分行和征服策略。我们在三个大图中评估我们的方法。实验结果表明,资源的消耗可以显着降低,大规模图的计算比现有方法更稳定。例如,分布式K-Core分解算法可以缩放到具有1360亿边缘的大图,而不会与我们的分行和征服技术丢失正确性。
translated by 谷歌翻译
背景:患者的分类是控制2019年冠状病毒疾病的大流行病(Covid-19),特别是在临床资源极为有限时在大流行的峰值期间。目的:开发一种用合成胸CT自动筛分和量化肺和肺炎病变的方法,并评估Covid-19患者的疾病严重程度。材料和方法:在本研究中,我们通过可用的数据集(来自“肺结核分析2016年”的285个数据集“来生成数据增强以产生合成胸CT图像。合成图像和掩模用于训练2D U-Net神经网络并在203个Covid-19数据集上测试,以产生肺和病变分段。疾病严重程度评分(DL:损伤负荷; DS:损伤得分)是基于分段计算的。使用Pearson方法评估DL / DS和临床实验室测试之间的相关性。 p值<0.05被认为是统计显着性。结果:将自动肺和病变分段与手动注释进行比较。对于肺部分割,骰子相似系数,Jaccard指数和平均表面距离的中值分别为98.56%,97.15%和0.49 mm。病变分割的相同度量分别为76.95%,62.54%和2.36毫米。在DL / DS和百分比淋巴细胞检测中发现显着(P << 0.05)相关性,R值分别为-0.561和-0.501。结论:基于胸部射线照相和数据增强的AI系统对Covid-19患者的肺癌和病变进行了分段。成像结果与临床实验室测试之间的相关性表明该系统的价值作为评估Covid-19疾病严重程度的潜在工具。
translated by 谷歌翻译
Covid-19已成为全球大流行,仍然对公众产生严重的健康风险。 CT扫描中肺炎病变的准确和有效的细分对于治疗决策至关重要。我们提出了一种使用循环一致生成的对冲网络(循环GaN)的新型无监督方法,其自动化和加速病变描绘过程。工作流程包括肺体积分割,“合成”健康肺一代,感染和健康的图像减法,以及二元病变面膜创造。首先使用预先训练的U-Net划定肺体积,并作为后续网络的输入。开发了循环GaN,以产生来自受感染的肺图像的合成的“健康”肺CT图像。之后,通过从“受感染的”肺CT图像中减去合成的“健康”肺CT图像来提取肺炎病变。然后将中值过滤器和K-Means聚类应用于轮廓的病变。在两个公共数据集(冠状遗传酶和Radiopedia)上验证了自动分割方法。骰子系数分别达到0.748和0.730,用于冠状遗传酶和RadioPedia数据集。同时,对冠纳卡酶数据集的病变分割性的精度和灵敏度为0.813和0.735,以及用于Radiopedia数据集的0.773和0.726。性能与现有的监督分割网络和以前无监督的特性相当。提出的无监督分割方法在自动Covid-19病变描绘中实现了高精度和效率。分割结果可以作为进一步手动修改的基线和病变诊断的质量保证工具。此外,由于其无人自化的性质,结果不受医师经验的影响,否则对监督方法至关重要。
translated by 谷歌翻译
最近,深度散列方法已广泛用于图像检索任务。大多数现有的深度散列方法采用一对一量化以降低信息损失。然而,这种类无关的量化不能为网络培训提供歧视反馈。此外,这些方法仅利用单个标签来集成散列函数学习数据的监督信息,这可能导致较差的网络泛化性能和相对低质量的散列代码,因为数据的帧间信息完全忽略。在本文中,我们提出了一种双语义非对称散列(DSAH)方法,其在三倍的约束下产生鉴别性哈希码。首先,DSAH在进行类结构量化之前利用类,以便在量化过程中传输类信息。其次,设计简单但有效的标签机制旨在表征类内的紧凑性和数据间数据间可分离性,从而实现了语义敏感的二进制代码学习。最后,设计了一种有意义的成对相似性保存损耗,以最小化基于亲和图的类相关网络输出之间的距离。利用这三个主要组件,可以通过网络生成高质量的哈希代码。在各种数据集上进行的广泛实验表明了DSAH的优越性与最先进的深度散列方法相比。
translated by 谷歌翻译
对不确定度和鲁棒性的高质量估计对于众多现实世界的应用来说至关重要,特别是对于深入学习,这是利用许多部署的ML系统。因此,比较改善这些估计的技术的能力对于研究和实践相似非常重要。然而,由于一系列原因,通常缺乏方法的竞争比较,包括:计算广泛调整的可用性,加入足够多的基线,以及用于再现性的具体文件。在本文中,我们介绍了不确定性的基线:在各种任务中的标准和最先进的深度学习方法的高质量实现。从本撰写中,集合跨越9项方法,每个方法都有至少5个度量。每个基线都是一个独立的实验管道,易于可重复使用和可伸缩的部件。我们的目标是提供具有新方法或应用的实验的即时出发点。此外,我们还提供模型检查点,实验输出为Python笔记本,以及用于比较结果的排行榜。代码在https://github.com/google/uncertainty-baselines。
translated by 谷歌翻译
回溯搜索算法通常用于解决约束满足问题(CSP)。回溯搜索的效率在很大程度上取决于可变排序启发式。目前,最常用的启发式是根据专家知识进行手工制作的。在本文中,我们提出了一种基于深度的加强学习方法,可以自动发现新的变量订购启发式,更好地适用于给定类CSP实例。我们显示,直接优化搜索成本很难用于自动启动,并建议优化在搜索树中到达叶节点的预期成本。为了捕获变量和约束之间的复杂关系,我们设计基于图形神经网络的表示方案,可以处理具有不同大小和约束的CSP实例。随机CSP实例上的实验结果表明,学习的政策在最小化搜索树大小的方面优于古典手工制作的启发式,并且可以有效地推广到比训练中使用的实例。
translated by 谷歌翻译