Due to their ability to offer more comprehensive information than data from a single view, multi-view (multi-source, multi-modal, multi-perspective, etc.) data are being used more frequently in remote sensing tasks. However, as the number of views grows, the issue of data quality becomes more apparent, limiting the potential benefits of multi-view data. Although recent deep neural network (DNN) based models can learn the weight of data adaptively, a lack of research on explicitly quantifying the data quality of each view when fusing them renders these models inexplicable, performing unsatisfactorily and inflexible in downstream remote sensing tasks. To fill this gap, in this paper, evidential deep learning is introduced to the task of aerial-ground dual-view remote sensing scene classification to model the credibility of each view. Specifically, the theory of evidence is used to calculate an uncertainty value which describes the decision-making risk of each view. Based on this uncertainty, a novel decision-level fusion strategy is proposed to ensure that the view with lower risk obtains more weight, making the classification more credible. On two well-known, publicly available datasets of aerial-ground dual-view remote sensing images, the proposed approach achieves state-of-the-art results, demonstrating its effectiveness. The code and datasets of this article are available at the following address: https://github.com/gaopiaoliang/Evidential.
translated by 谷歌翻译
In this tutorial paper, we look into the evolution and prospect of network architecture and propose a novel conceptual architecture for the 6th generation (6G) networks. The proposed architecture has two key elements, i.e., holistic network virtualization and pervasive artificial intelligence (AI). The holistic network virtualization consists of network slicing and digital twin, from the aspects of service provision and service demand, respectively, to incorporate service-centric and user-centric networking. The pervasive network intelligence integrates AI into future networks from the perspectives of networking for AI and AI for networking, respectively. Building on holistic network virtualization and pervasive network intelligence, the proposed architecture can facilitate three types of interplay, i.e., the interplay between digital twin and network slicing paradigms, between model-driven and data-driven methods for network management, and between virtualization and AI, to maximize the flexibility, scalability, adaptivity, and intelligence for 6G networks. We also identify challenges and open issues related to the proposed architecture. By providing our vision, we aim to inspire further discussions and developments on the potential architecture of 6G.
translated by 谷歌翻译
Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
In this paper, we design a resource management scheme to support stateful applications, which will be prevalent in 6G networks. Different from stateless applications, stateful applications require context data while executing computing tasks from user terminals (UTs). Using a multi-tier computing paradigm with servers deployed at the core network, gateways, and base stations to support stateful applications, we aim to optimize long-term resource reservation by jointly minimizing the usage of computing, storage, and communication resources and the cost from reconfiguring resource reservation. The coupling among different resources and the impact of UT mobility create challenges in resource management. To address the challenges, we develop digital twin (DT) empowered network planning with two elements, i.e., multi-resource reservation and resource reservation reconfiguration. First, DTs are designed for collecting UT status data, based on which UTs are grouped according to their mobility patterns. Second, an algorithm is proposed to customize resource reservation for different groups to satisfy their different resource demands. Last, a Meta-learning-based approach is developed to reconfigure resource reservation for balancing the network resource usage and the reconfiguration cost. Simulation results demonstrate that the proposed DT-empowered network planning outperforms benchmark frameworks by using less resources and incurring lower reconfiguration costs.
translated by 谷歌翻译
提示将下游应用程序作为语言建模任务施放,与使用预训练的模型进行标准微调相比,已显示出样本有效的效率。但是,提示的一个陷阱是需要手动设计的模式,其结果可能是不直觉的,需要大量的验证集来调整。为了应对挑战,我们提出了一种全自动提示方法Autoseq:(1)我们在序列到序列模型上采用自然语言提示,从而实现自由形式生成和更大的标签搜索空间; (2)我们提出了标签序列 - 无限长度的短语以口头表达标签 - 这消除了手动模板的需求,并且比单个标签单词更具有表现力; (3)我们使用Beam Search自动生成大量的标签序列候选物,并提出对比度重新排列以获得最佳组合。 Autoseq显着胜过其他无手动设计方法,例如软提示调整,适配器调整和自动搜索单个标签单词;生成的标签序列比各种任务上的精选手动序列更好。我们的方法揭示了几次学习中序列模型的潜力,并阐明了通用通用和自动提示的途径。本文的源代码可以从https://github.com/thunlp/seq2seq-prompt获得。
translated by 谷歌翻译
本文介绍了Z-Code ++,这是一种针对抽象文本摘要优化的新的预训练的语言模型。该模型使用三种技术扩展了艺术编码器模型的状态。首先,我们使用两阶段的预训练过程来改善模型在低资源摘要任务上的性能。该模型首先是使用文本语料库进行语言理解的预先培训的,然后在汇总语料库中不断预先培训,以进行基础文本生成。其次,我们用分离的注意力层代替编码器中的自我发项层,其中每个单词都使用两个向量分别代表其内容和位置。第三,我们使用融合编码器,这是一种以层次方式编码长序列的简单而有效的方法。 Z-Code ++在13个文本摘要任务中的9个跨5种语言中创建了新的艺术状态。我们的模型的参数有效,因为它的表现优于XSUM上600倍较大的Palm-540b,并且在Samsum上的易经的200倍GPT3-175B较大。在零射击和少量设置中,我们的模型大大优于竞争模型。
translated by 谷歌翻译
在本文中,我们介绍了OpenMedia,这是一个开源工具箱库,其中包含在异质人工智能(AI)计算平台下用于医学图像分析的丰富深度学习方法。各种医学图像分析方法,包括2D $/$ 3D医疗图像分类,细分,本地化和检测,已与Pytorch和$/$或Mindspore实现在异质NVIDIA和HUAWEI ASCEND ASCEND Computing系统下包含在工具箱中。据我们所知,OpenMedia是第一个提供Pytorch和Mindsp的开源算法库
translated by 谷歌翻译
在本文中,我们介绍了2022年多模式情感分析挑战(MUSE)的解决方案,其中包括Muse-Humor,Muse-Rection和Muse Surns Sub-Challenges。 2022年穆斯穆斯(Muse 2022)着重于幽默检测,情绪反应和多模式的情感压力,利用不同的方式和数据集。在我们的工作中,提取了不同种类的多模式特征,包括声学,视觉,文本和生物学特征。这些功能由Temma和Gru融合到自发机制框架中。在本文中,1)提取了一些新的音频功能,面部表达功能和段落级文本嵌入以进行准确的改进。 2)我们通过挖掘和融合多模式特征来显着提高多模式情感预测的准确性和可靠性。 3)在模型培训中应用有效的数据增强策略,以减轻样本不平衡问题并防止模型形成学习有偏见的主题字符。对于博物馆的子挑战,我们的模型获得了0.8932的AUC分数。对于Muse Rection子挑战,我们在测试集上的Pearson相关系数为0.3879,它的表现优于所有其他参与者。对于Muse Surst Sub-Challenge,我们的方法在测试数据集上的唤醒和价值都优于基线,达到了0.5151的最终综合结果。
translated by 谷歌翻译
旨在预测人们对不同视觉刺激的情绪的视觉情感分析(VEA)最近已成为一个有吸引力的研究主题。而不是单个标签分类任务,而是通过向不同个人投票将VEA视为标签分布学习(LDL)问题是更合理的。现有方法通常可以预测统一网络中的视觉情绪分布,从而忽略了人群投票过程中的固有主观性。在心理学中,\ textit {object-appraiSal-emotion}模型表明,每个人的情绪都受到主观评估的影响,这是由情感记忆进一步形成的。受此启发,我们提出了一个新颖的\ textit {主观性评估和匹配网络(SAMNET)},以研究视觉情感分布中的主观性。为了描述人群投票过程中的多样性,我们首先提出了\ textit {主观性评估},其中每个分支都模拟了特定个人的情感唤起过程。具体而言,我们使用基于注意力的机制来构建情感记忆,以保护每个人的独特情感体验。进一步提出了主观性损失,以确保不同个体之间的差异。此外,我们提出了\ textit {主观性匹配},旨在将无序的情感标签分配给与匈牙利算法一对一的对应关系中的单个预测。广泛的实验和比较是在公共视觉情绪分布数据集上进行的,结果表明,所提出的SAMNET始终优于最新方法。消融研究验证我们方法的有效性,可视化证明了其可解释性。
translated by 谷歌翻译
改变布料的人重新识别(REID)是一个新出现的研究主题,旨在检索换衣服的行人。由于带有不同衣服的人类外观表现出较大的变化,因此现有方法很难提取歧视性和健壮的特征表示。当前的作品主要集中在身体形状或轮廓草图上,但是人类的语义信息以及换衣服之前和之后的行人特征的潜在一致性未被充分探索或被忽略。为了解决这些问题,在这项工作中,提出了一种新颖的语义意识到的注意力和视觉屏蔽网络,用于换衣服的人Reid(缩写为SAV),其中关键的想法是屏蔽与衣服外观相关的线索,只关注衣服的外观对视图/姿势变化不敏感的视觉语义信息。具体而言,首先采用了视觉语义编码器来基于人类语义分割信息来定位人体和服装区域。然后,提出了人类的语义注意模块(HSA),以突出显示人类的语义信息并重新授予视觉特征图。此外,视觉服装屏蔽模块(VCS)还旨在通过覆盖衣服区域并将模型集中在与衣服无关的视觉语义信息上来提取更健壮的特征代表。最重要的是,这两个模块在端到端统一框架中共同探索。广泛的实验表明,所提出的方法可以显着胜过最先进的方法,并且可以为换衣的人提取更健壮的特征。与FSAM(在CVPR 2021中发布)相比,该方法可以分别在LTCC和PRCC数据集上以MAP(RANK-1)的形式获得32.7%(16.5%)和14.9%( - )。
translated by 谷歌翻译