Video Super-Resolution (VSR) aims to restore high-resolution (HR) videos from low-resolution (LR) videos. Existing VSR techniques usually recover HR frames by extracting pertinent textures from nearby frames with known degradation processes. Despite significant progress, grand challenges are remained to effectively extract and transmit high-quality textures from high-degraded low-quality sequences, such as blur, additive noises, and compression artifacts. In this work, a novel Frequency-Transformer (FTVSR) is proposed for handling low-quality videos that carry out self-attention in a combined space-time-frequency domain. First, video frames are split into patches and each patch is transformed into spectral maps in which each channel represents a frequency band. It permits a fine-grained self-attention on each frequency band, so that real visual texture can be distinguished from artifacts. Second, a novel dual frequency attention (DFA) mechanism is proposed to capture the global frequency relations and local frequency relations, which can handle different complicated degradation processes in real-world scenarios. Third, we explore different self-attention schemes for video processing in the frequency domain and discover that a ``divided attention'' which conducts a joint space-frequency attention before applying temporal-frequency attention, leads to the best video enhancement quality. Extensive experiments on three widely-used VSR datasets show that FTVSR outperforms state-of-the-art methods on different low-quality videos with clear visual margins. Code and pre-trained models are available at https://github.com/researchmm/FTVSR.
translated by 谷歌翻译
We propose the first joint audio-video generation framework that brings engaging watching and listening experiences simultaneously, towards high-quality realistic videos. To generate joint audio-video pairs, we propose a novel Multi-Modal Diffusion model (i.e., MM-Diffusion), with two-coupled denoising autoencoders. In contrast to existing single-modal diffusion models, MM-Diffusion consists of a sequential multi-modal U-Net for a joint denoising process by design. Two subnets for audio and video learn to gradually generate aligned audio-video pairs from Gaussian noises. To ensure semantic consistency across modalities, we propose a novel random-shift based attention block bridging over the two subnets, which enables efficient cross-modal alignment, and thus reinforces the audio-video fidelity for each other. Extensive experiments show superior results in unconditional audio-video generation, and zero-shot conditional tasks (e.g., video-to-audio). In particular, we achieve the best FVD and FAD on Landscape and AIST++ dancing datasets. Turing tests of 10k votes further demonstrate dominant preferences for our model. The code and pre-trained models can be downloaded at https://github.com/researchmm/MM-Diffusion.
translated by 谷歌翻译
预先训练的图像文本模型(如剪辑)已经证明了从大规模的Web收集的图像文本数据中学到的视觉表示的强大力量。鉴于学习良好的视觉特征,一些现有的作品将图像表示转移到视频域并取得良好的结果。但是,如何利用图像语言预训练的模型(例如,剪辑)进行视频培训(后培训)仍在探索。在本文中,我们研究了两个问题:1)阻碍后期剪辑的因素是什么因素,以进一步提高视频语言任务的性能? 2)如何减轻这些因素的影响?通过一系列比较实验和分析,我们发现语言源之间的数据量表和域间隙具有很大的影响。由这些动机,我们提出了一种配备了视频代理机制的Omnisource跨模式学习方法,即剪辑,即剪辑VIP。广泛的结果表明,我们的方法可以提高视频检索的剪辑的性能。我们的模型还可以在包括MSR-VTT,DIDEMO,LSMDC和ActivityNet在内的各种数据集上实现SOTA结果。我们在https://github.com/microsoft/xpretrain/tree/main/main/main/clip-vip上发布了代码和预训练的剪辑模型。
translated by 谷歌翻译
AI Illustrator旨在自动设计具有视觉吸引力的图像,以激发丰富的思想和情感。为了实现这一目标,我们提出了一个框架,将具有复杂语义的原始描述转换为语义相应的图像。主要的挑战在于原始描述语义的复杂性,可能很难可视化(\ textit {e}。通常,它对现有方法构成了处理此类描述的挑战。为了解决这个问题,我们建议基于rompt \ textbf {c} ross- \ textbf {m} odal generation \ textbf {frame} work(pcm-frame)利用两个强大的预培养模型,,包括剪辑和Stylegan。我们的框架由两个组件组成:\ textIt {textIt嵌入} s到\ textit {image嵌入} s的投影模块,基于提示以及一个构建的适应图像生成模块,该模块构建了\ textit {image嵌入{image Embedding} s作为输入并受到共同语义一致性损失的训练。为了弥合现实图像和插图设计之间的差距,我们进一步采用了风格化模型作为后处理,以获得更好的视觉效果。受益于预先训练的模型,我们的方法可以处理复杂的描述,并且不需要外部配对数据进行培训。此外,我们已经建立了一个由200个原始描述组成的基准。我们进行了一项用户研究,以证明我们对复杂文本的竞争方法的优势。我们在https://github.com/researchmm/ai \ _illustrator} {https://github.com/researchmem/researchmm/ai \_illustrator上发布代码
translated by 谷歌翻译
图像增强旨在通过修饰颜色和音调来提高照片的美学视觉质量,并且是专业数字摄影的必不可少的技术。近年来,基于学习的图像增强算法已达到有希望的表现,并吸引了日益普及。但是,典型的努力试图为所有像素的颜色转换构建一个均匀的增强子。它忽略了对照片重要的不同内容(例如,天空,海洋等)之间的像素差异,从而导致结果不令人满意。在本文中,我们提出了一个新颖的可学习背景知觉的4维查找表(4D LUT),该表通过适应性地学习照片上下文来实现每个图像中不同内容的增强。特别是,我们首先引入一个轻量级上下文编码器和一个参数编码器,以分别学习像素级类别的上下文图和一组图像自适应系数。然后,通过通过系数集成多个基础4D LUT来生成上下文感知的4D LUT。最后,可以通过将源图像和上下文图馈入融合的上下文感知的4D〜LUT来获得增强的图像。与传统的3D LUT(即RGB映射到RGB)相比,通常用于摄像机成像管道系统或工具,4D LUT,即RGBC(RGB+上下文)映射到RGB,可实现具有不同像素的颜色转换的最佳控制每个图像中的内容,即使它们具有相同的RGB值。实验结果表明,我们的方法在广泛使用的基准中优于其他最先进的方法。
translated by 谷歌翻译
关于语言引导的图像操纵的最新作品在提供丰富的语义方面表现出了极大的语言力量,尤其是对于面部图像。但是,语言中的其他自然信息,动作的探索较少。在本文中,我们利用运动信息并研究一项新颖的任务,语言引导的面部动画,旨在在语言的帮助下对静态面部图像进行动画。为了更好地利用语言的语义和动作,我们提出了一个简单而有效的框架。具体而言,我们提出了一个经常性运动生成器,以从语言中提取一系列语义和运动信息,并将其与视觉信息一起提供给预训练的样式,以生成高质量的帧。为了优化所提出的框架,提出了三个精心设计的损失功能,包括保持面部身份的正规化损失,路径长度正规化损失以确保运动平滑度和对比度损失,以在一个模型中使用各种语言指导启用视频综合。对不同领域的定性和定量评估进行了广泛的实验(\ textit {ef。语。代码将在https://github.com/tiankaihang/language-guided-animation.git上找到。
translated by 谷歌翻译
在本文中,我们在CVPR 2022中提供了EGO4D自然语言查询挑战的技术报告。由于对视频内容的全面了解,自然语言查询任务是具有挑战性的。大多数以前的工作基于第三人称视图数据集解决了此任务,而在以自我为中心的视图中,很少有研究兴趣。不过,已经取得了巨大进展,我们注意到以前的作品无法很好地适应以自我为中心的视图数据集,例如,ego4d主要是因为两个原因:1)ego4d中的大多数查询都有很小的时间持续时间(例如,少于5秒钟);2)EGO4D中的查询面临着对长期时间订单的更复杂的视频理解。考虑到这些,我们建议解决这一挑战的解决方案,以解决上述问题。
translated by 谷歌翻译
当前现有的视觉和语言预训练(VLP)方法的大多数主要集中在如何提取和调整视觉和文本功能上。与主流VLP方法相反,我们强调指出,在训练预训练期间的两个常规应用步骤对预训练模型的性能至关重要:图像介绍(ITM)的内部硬性负面采样(ITM)并分配大型掩盖掩盖语言建模(MLM)的概率。在经验显示上述两个步骤的意外有效性之后,我们系统地设计了砂粒vlp,该砂粒可适应小型批次,以更有效地为ITM挖掘硬性阴性样品,同时维持预训练的计算成本。我们的方法由三个组成部分组成:1)分组的迷你批次采样(砂砾)策略,该策略在迷你批次中收集了类似的示例,2)ITC一致性损失以提高采矿能力,3)MLM的扩大掩蔽概率。因此,我们显示了我们的砂粒vlp在各种下游任务上实现了新的最新性能,计算成本要少得多。此外,我们证明了我们的模型基本上与以前的最先进的ALBEF相提并论,只有三分之一的训练时代在相同的培训数据上。代码可在https://github.com/jaeseokbyun/grit-vlp上找到。
translated by 谷歌翻译
压缩视频超分辨率(VSR)旨在从压缩的低分辨率对应物中恢复高分辨率帧。最近的VSR方法通常通过借用相邻视频帧的相关纹理来增强输入框架。尽管已经取得了一些进展,但是从压缩视频中有效提取和转移高质量纹理的巨大挑战,这些视频通常会高度退化。在本文中,我们提出了一种用于压缩视频超分辨率(FTVSR)的新型频率转换器,该频率在联合时空频域中进行自我注意。首先,我们将视频框架分为斑块,然后将每个贴片转换为DCT光谱图,每个通道代表频带。这样的设计使每个频带都可以进行细粒度的自我注意力,因此可以将真实的视觉纹理与伪影区分开,并进一步用于视频框架修复。其次,我们研究了不同的自我发场方案,并发现在对每个频带上应用暂时关注之前,会引起关节空间的注意力,从而带来最佳的视频增强质量。两个广泛使用的视频超分辨率基准的实验结果表明,FTVSR在未压缩和压缩视频的最先进的方法中都具有清晰的视觉边距。代码可在https://github.com/researchmm/ftvsr上找到。
translated by 谷歌翻译
对比性语言图像预测在学习网络尺度数据的视觉文本联合表示方面取得了巨大的成功,这表明了各种图像任务的显着“零射”概括能力。但是,如何有效地将这种新的语言图像预处理方法扩展到视频域仍然是一个开放的问题。在这项工作中,我们提出了一种简单而有效的方法,该方法将预验证的语言图像模型直接适应视频识别,而不是从头开始预处理新模型。更具体地说,为了捕获沿时间维度框架的远距离依赖性,我们提出了一种跨框架注意机制,该机制明确地跨帧交换信息。这样的模块是轻量级的,可以无缝地插入验证的语言图像模型中。此外,我们提出了一个特定于视频的提示方案,该方案利用视频内容信息生成歧视性文本提示。广泛的实验表明,我们的方法是有效的,可以推广到不同的视频识别方案。特别是,在完全监督的设置下,我们的方法在Kinectics-400上获得了最高1的精度为87.1%,而与SWIN-L和Vivit-H相比,使用量少12倍。在零拍摄的实验中,我们的方法超过了当前的最新方法 +7.6%和 +14.9%,而在两个流行协议下,TOP-1的准确性。在少数拍摄的情况下,当标记的数据非常有限时,我们的方法优于先前的最佳方法 +32.1%和 +23.1%。代码和型号可在https://aka.ms/x-clip上找到
translated by 谷歌翻译