In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
We propose a new neural network design paradigm Reversible Column Network (RevCol). The main body of RevCol is composed of multiple copies of subnetworks, named columns respectively, between which multi-level reversible connections are employed. Such architectural scheme attributes RevCol very different behavior from conventional networks: during forward propagation, features in RevCol are learned to be gradually disentangled when passing through each column, whose total information is maintained rather than compressed or discarded as other network does. Our experiments suggest that CNN-style RevCol models can achieve very competitive performances on multiple computer vision tasks such as image classification, object detection and semantic segmentation, especially with large parameter budget and large dataset. For example, after ImageNet-22K pre-training, RevCol-XL obtains 88.2% ImageNet-1K accuracy. Given more pre-training data, our largest model RevCol-H reaches 90.0% on ImageNet-1K, 63.8% APbox on COCO detection minival set, 61.0% mIoU on ADE20k segmentation. To our knowledge, it is the best COCO detection and ADE20k segmentation result among pure (static) CNN models. Moreover, as a general macro architecture fashion, RevCol can also be introduced into transformers or other neural networks, which is demonstrated to improve the performances in both computer vision and NLP tasks. We release code and models at https://github.com/megvii-research/RevCol
translated by 谷歌翻译
The success of deep learning heavily relies on large-scale data with comprehensive labels, which is more expensive and time-consuming to fetch in 3D compared to 2D images or natural languages. This promotes the potential of utilizing models pretrained with data more than 3D as teachers for cross-modal knowledge transferring. In this paper, we revisit masked modeling in a unified fashion of knowledge distillation, and we show that foundational Transformers pretrained with 2D images or natural languages can help self-supervised 3D representation learning through training Autoencoders as Cross-Modal Teachers (ACT). The pretrained Transformers are transferred as cross-modal 3D teachers using discrete variational autoencoding self-supervision, during which the Transformers are frozen with prompt tuning for better knowledge inheritance. The latent features encoded by the 3D teachers are used as the target of masked point modeling, wherein the dark knowledge is distilled to the 3D Transformer students as foundational geometry understanding. Our ACT pretrained 3D learner achieves state-of-the-art generalization capacity across various downstream benchmarks, e.g., 88.21% overall accuracy on ScanObjectNN. Codes will be released at https://github.com/RunpeiDong/ACT.
translated by 谷歌翻译
在深度感知的固有歧义的范围内,现代相机的3D对象检测方法属于性能瓶颈。从直觉上讲,利用时间多视角立体声(MVS)技术是解决这种歧义的自然知识。但是,在适用于3D对象检测场景时,MV的传统尝试在两个方面存在缺陷:1)所有观点之间的亲和力测量遭受昂贵的计算成本; 2)很难处理经常移动物体的室外场景。为此,我们引入了一种有效的时间立体声方法,以动态选择匹配候选者的尺度,从而显着减少计算开销。更进一步,我们设计了一种迭代算法,以更新更有价值的候选人,使其适应移动候选人。我们将我们提出的方法实例化,以进行多视图3D检测器,即Bevstereo。 Bevstereo在Nuscenes数据集的仅相机轨道上实现了新的最先进的性能(即52.5%地图和61.0%NDS)。同时,广泛的实验反映了我们的方法比当代MVS方法更好地处理复杂的室外场景。代码已在https://github.com/megvii astection/bevstereo上发布。
translated by 谷歌翻译
在这项研究中,我们提出了一个新的3D对象检测器,具有可信赖的深度估计,称为bevdepth,用于基于摄像机的鸟类视图(BEV)3D对象检测。通过对最近方法的彻底分析,我们发现没有摄像头信息的深度估计是隐式学习的,这使其成为创建以下伪点云的事实伪造深度。使用编码的内在和外在参数,BevDepth获得了明确的深度监督。进一步引入了深度校正子网络,以抵消深度地面真理中的投影引起的干扰。为了减少速度瓶颈,同时使用估计的深度将功能从图像视图投影到BEV中,还提出了快速的视频转换操作。此外,我们的bevdepth可以通过多帧的输入轻松扩展。 Bevdepth没有任何铃铛和哨子,可以在具有挑战性的Nuscenes测试套装上实现新的最新60.0%NDS,同时保持高效率。相机和激光雷达之间的性能差距首次在10%NDS之内大大降低。
translated by 谷歌翻译
根据图像回答语义复杂的问题是在视觉问题应答(VQA)任务中的具有挑战性。虽然图像可以通过深度学习来良好代表,但是始终简单地嵌入问题,并且不能很好地表明它的含义。此外,视觉和文本特征具有不同模式的间隙,很难对齐和利用跨模块信息。在本文中,我们专注于这两个问题,并提出了一种匹配关注(GMA)网络的图表。首先,它不仅为图像构建图形,而且在句法和嵌入信息方面构建了该问题的图表。接下来,我们通过双级图形编码器探讨了模特内的关系,然后呈现双边跨模型图匹配注意力以推断图像与问题之间的关系。然后将更新的跨模式特征发送到答案预测模块中以进行最终答案预测。实验表明,我们的网络在GQA数据集和VQA 2.0数据集上达到了最先进的性能。消融研究验证了GMA网络中每个模块的有效性。
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译
Rankings are widely collected in various real-life scenarios, leading to the leakage of personal information such as users' preferences on videos or news. To protect rankings, existing works mainly develop privacy protection on a single ranking within a set of ranking or pairwise comparisons of a ranking under the $\epsilon$-differential privacy. This paper proposes a novel notion called $\epsilon$-ranking differential privacy for protecting ranks. We establish the connection between the Mallows model (Mallows, 1957) and the proposed $\epsilon$-ranking differential privacy. This allows us to develop a multistage ranking algorithm to generate synthetic rankings while satisfying the developed $\epsilon$-ranking differential privacy. Theoretical results regarding the utility of synthetic rankings in the downstream tasks, including the inference attack and the personalized ranking tasks, are established. For the inference attack, we quantify how $\epsilon$ affects the estimation of the true ranking based on synthetic rankings. For the personalized ranking task, we consider varying privacy preferences among users and quantify how their privacy preferences affect the consistency in estimating the optimal ranking function. Extensive numerical experiments are carried out to verify the theoretical results and demonstrate the effectiveness of the proposed synthetic ranking algorithm.
translated by 谷歌翻译
Due to their ability to offer more comprehensive information than data from a single view, multi-view (multi-source, multi-modal, multi-perspective, etc.) data are being used more frequently in remote sensing tasks. However, as the number of views grows, the issue of data quality becomes more apparent, limiting the potential benefits of multi-view data. Although recent deep neural network (DNN) based models can learn the weight of data adaptively, a lack of research on explicitly quantifying the data quality of each view when fusing them renders these models inexplicable, performing unsatisfactorily and inflexible in downstream remote sensing tasks. To fill this gap, in this paper, evidential deep learning is introduced to the task of aerial-ground dual-view remote sensing scene classification to model the credibility of each view. Specifically, the theory of evidence is used to calculate an uncertainty value which describes the decision-making risk of each view. Based on this uncertainty, a novel decision-level fusion strategy is proposed to ensure that the view with lower risk obtains more weight, making the classification more credible. On two well-known, publicly available datasets of aerial-ground dual-view remote sensing images, the proposed approach achieves state-of-the-art results, demonstrating its effectiveness. The code and datasets of this article are available at the following address: https://github.com/gaopiaoliang/Evidential.
translated by 谷歌翻译
A noisy training set usually leads to the degradation of the generalization and robustness of neural networks. In this paper, we propose a novel theoretically guaranteed clean sample selection framework for learning with noisy labels. Specifically, we first present a Scalable Penalized Regression (SPR) method, to model the linear relation between network features and one-hot labels. In SPR, the clean data are identified by the zero mean-shift parameters solved in the regression model. We theoretically show that SPR can recover clean data under some conditions. Under general scenarios, the conditions may be no longer satisfied; and some noisy data are falsely selected as clean data. To solve this problem, we propose a data-adaptive method for Scalable Penalized Regression with Knockoff filters (Knockoffs-SPR), which is provable to control the False-Selection-Rate (FSR) in the selected clean data. To improve the efficiency, we further present a split algorithm that divides the whole training set into small pieces that can be solved in parallel to make the framework scalable to large datasets. While Knockoffs-SPR can be regarded as a sample selection module for a standard supervised training pipeline, we further combine it with a semi-supervised algorithm to exploit the support of noisy data as unlabeled data. Experimental results on several benchmark datasets and real-world noisy datasets show the effectiveness of our framework and validate the theoretical results of Knockoffs-SPR. Our code and pre-trained models will be released.
translated by 谷歌翻译