小鼠的自动社会行为分析已成为行为神经科学中越来越流行的研究领域。最近,已使用姿势信息(即关键点或骨骼的位置)来解释小鼠的社会行为。然而,很少在现有方法中研究了小鼠关键点基础的社会互动信息的有效编码和解码。特别是,由于高度变形的身体形状和模棱两可的运动模式,建模小鼠之间复杂的社交互动是一项挑战。为了处理交互建模问题,我们在这里提出了一个跨骨骼相互作用图聚合网络(CS-IGANET),以学习自由相互作用的小鼠的丰富动力学,其中使用了跨骨骼节点级交互模块(CS-NLI)建模多级相互作用(即内部,间和跨骨骼相互作用)。此外,我们设计了一种新颖的互动感知变压器(IAT),以动态学习社交行为的图形表示,并更新节点级表示,并在我们提出的互动意识到的自我注意力下的机制的指导下。最后,为了增强我们的模型的表示能力,提出了辅助自我监督的学习任务来衡量跨骨骼节点之间的相似性。标准CRMI13-SKERTON和我们的PDMB-Skeleton数据集的实验结果表明,我们所提出的模型的表现优于其他几种最先进的方法。
translated by 谷歌翻译
我们研究了视频引用表达理解(REC)的问题,该问题旨在将句子中描述的引用对象定位为视频帧中的视觉区域。尽管取得了最近的进展,但现有方法却遇到了两个问题:1)视频帧之间的本地化结果不一致; 2)参考对象和上下文对象之间的混淆。为此,我们提出了一个新颖的双对应网络(称为DCNET),该网络明确增强了框架间和跨模式的密集关联。首先,我们旨在为框架内所有现有实例建立框架间的相关性。具体而言,我们计算框架间的斑点余弦相似性,以估计密集的对齐方式,然后执行框架间的对比度学习以在特征空间中映射它们。其次,我们建议构建细粒斑点字对齐,以将每个贴片与某些单词相关联。由于缺乏这种详细的注释,我们还通过余弦相似性预测了斑点字的对应关系。广泛的实验表明,我们的DCNET在视频和图像基准测试中都达到了最先进的性能。此外,我们进行了全面的消融研究和彻底的分析,以探索最佳模型设计。值得注意的是,我们的框架间和跨模式对比损失是插件功能,适用于任何视频架构架构。例如,通过在共同接地之上进行构建,我们在vid-sentence数据集的Accu。0.5上提高了1.48%的性能。
translated by 谷歌翻译
在过去的十年中,电子商务的自动产品描述生成已经取得了重大进步。产品文案旨在通过通过文本描述突出产品特征来吸引用户的兴趣并改善用户体验。随着电子商务平台提供的服务变得多样化,有必要动态地调整自动生成描述的模式。在本文中,我们将基于电子商务前缀的可控文案生成(EPCCG)系统部署到JD.com电子商务产品推荐平台中的经验。系统的开发包含两个主要组成部分:1)文案写作方面提取; 2)弱监督的方面标签; 3)具有基于前缀的语言模型的文本生成; 4)文案写作质量控制。我们进行实验以验证拟议的EPCCG的有效性。此外,我们将与EPCCG合作的已部署架构介绍到实时JD.com电子商务推荐平台以及部署以来的巨大回报。
translated by 谷歌翻译
排名者在事实上的“检索和rerank”管道中起着必不可少的作用,但其训练仍然落后 - 从中​​度的负面因素或/和/和/和作为回收者的辅助模块中学习。在这项工作中,我们首先确定了强大的排名者的两个主要障碍,即是由训练有素的回猎犬和非理想的负面负面的固有标签噪声,该噪声是为高能力的排名所采样的。因此,我们提出多个检索器,因为负面发电机改善了排名者的鲁棒性,其中i)涉及广泛的分发标签噪声,使排名者与每个噪声分布相对,而ii)与排名相对较接近排名负分配,导致更具挑战性的培训。为了评估我们的强大排名者(称为r $^2 $ anker),我们在各种环境中进行了有关流行通道检索基准测试的各种实验,包括BM25级,全等级,回收者蒸馏等。经验结果验证了新的州 - 新州 - 新州 - 我们模型的效果。
translated by 谷歌翻译
深度神经网络在大规模标记的数据集的帮助下,在各种任务上取得了出色的表现。然而,这些数据集既耗时又竭尽全力来获得现实的任务。为了减轻对标记数据的需求,通过迭代分配伪标签将伪标签分配给未标记的样本,自我训练被广泛用于半监督学习中。尽管它很受欢迎,但自我训练还是不可靠的,通常会导致训练不稳定。我们的实验研究进一步表明,半监督学习的偏见既来自问题本身,也来自不适当的训练,并具有可能不正确的伪标签,这会在迭代自我训练过程中累积错误。为了减少上述偏见,我们提出了自我训练(DST)。首先,伪标签的生成和利用是由两个独立于参数的分类器头解耦,以避免直接误差积累。其次,我们估计自我训练偏差的最坏情况,其中伪标记函数在标记的样品上是准确的,但在未标记的样本上却尽可能多地犯错。然后,我们通过避免最坏的情况来优化表示形式,以提高伪标签的质量。广泛的实验证明,DST在标准的半监督学习基准数据集上的最先进方法中,平均提高了6.3%,而在13个不同任务上,FIXMATCH的平均水平为18.9%。此外,DST可以无缝地适应其他自我训练方法,并有助于稳定他们在从头开始的培训和预先训练模型的训练的情况下,在培训的情况下进行培训和平衡表现。
translated by 谷歌翻译
知识共享和模型个性化是应对联邦学习(FL)中非IID挑战的重要组成部分。大多数现有的FL方法侧重于两个极端:1)学习共享模型,以使用非IID数据为所有客户提供服务,以及2)为每个客户(即个性化fl)学习个性化模型。有一个权衡解决方案,即群集或集群个性化的FL,旨在将相似的客户聚集到一个集群中,然后在集群中为所有客户学习共享模型。本文是通过将群集群集制定为可以统一现有方法的双层优化框架来重新审视群集的研究。我们提出了一个新的理论分析框架,以通过考虑客户之间的凝聚力来证明融合。此外,我们以一种称为加权聚类联合学习(WECFL)的算法体现了该框架。经验分析验证了理论结果,并证明了在拟议的集群非IID设置下提出的WECFL的有效性。
translated by 谷歌翻译
自然语言界面(NLIS)为用户提供了一种方便的方式来通过自然语言查询交互分析数据。然而,交互式数据分析是一种苛刻的过程,特别是对于新手数据分析师。从不同域探索大型和复杂的数据集时,数据分析师不一定有足够的关于数据和应用域的知识。它使他们无法有效地引起一系列查询并广泛导出理想的数据洞察力。在本文中,我们使用Step-Wise查询推荐模块开发NLI,以帮助用户选择适当的下一步探索操作。该系统采用数据驱动方法,以基于其查询日志生成用户兴趣的应用域的逐步语义相关和上下文感知的查询建议。此外,该系统可帮助用户将查询历史和结果组织成仪表板以传达发现的数据洞察力。通过比较用户学习,我们表明我们的系统可以促进比没有推荐模块的基线更有效和系统的数据分析过程。
translated by 谷歌翻译
我们微调GPT-3使用基于文本的Web浏览环境来回答长形问题,允许模型搜索和导航Web。通过建立任务,以便通过人类执行,我们能够使用模仿学习培训在任务上的模型,然后通过人体反馈优化答案质量。为了使人为评估事实精度更容易,模型必须在浏览支持答案时收集引用。我们在ELI5上培训并评估我们的模型,Reddit用户提出的问题数据集。我们的最佳模型是通过使用行为克隆进行微调GPT-3获得的,然后对训练训练的奖励模型进行拒绝采样来获得以预测人类偏好。这种模式的答案是人类56%的答案,我们的人类示威者的时间和69%的时间到Reddit的最高投票答复。
translated by 谷歌翻译
我们提出了一种新的域特定的生成预训练(DS-GPT)方法,用于文本生成,并将其应用于电子商务移动显示器上的产品Titleand审查总结问题。首先,我们采用了仅限解码器的变压器体系结构,该架构Fitswell通过组合输入和输出全部携带的微调任务。其次,我们在相关域中仅使用少量预训练数据是强大的。预先训练从一般语料库中的矛盾,如维基百科或通用需要巨大的时间和资源承诺,如果下游任务有限。 OUDSGPT在Limble DataSet中预先培训,中文短篇演示数据集(LCSTS)。第三,我们的模型不要求相关的人类标记数据。对于标题摘要任务,艺术状态明确地使用额外的背景知识训练和预测阶段。相比之下,我们的模型暗示 - 在公共Taobao.comDataset上微调后,旨在捕获这种知识并实现了重要的改进其他方法。对于审查摘要任务,我们利用JD.com在-UteedAtaset上,并观察到缺乏微调灵活性的标准机械进程方法的类似改进。我们的工作可以简单地扩展到其他文本生成任务的域。
translated by 谷歌翻译
许多应用程序和研究项目中出现了时间相关的二次最小化(TDQM)问题。据报道,归零神经网络(ZnN)模型可以有效解决TDQM问题。然而,对于缺乏自适应系数和集成增强术语的联合动作机制,限制了现有ZNN模型的会聚和鲁棒性能。因此,在本文中提出了具有集成术语的残余基适应系数归零神经网络(RACZNN)模型,用于解决TDQM问题。提出了自适应系数来提高收敛性能,嵌入集成术语以确保RACZNN模型可以在通过变体测量噪声扰乱时保持可靠的鲁棒性。与最先进的模型相比,建议的Racznn模型拥有更快的融合和更可靠的鲁棒性。然后,提供定理以证明RACZNN模型的融合。最后,在本文中设计和执行相应的数值实验,以验证所提出的RACZNN模型的性能。
translated by 谷歌翻译