边界盒注释表单是可视对象本地化任务最常用的方法。然而,边界盒注释依赖于大量的精确注释的边界盒,这是昂贵的,艰苦的,因此在实际情况下是不可能的,对于某些应用而言,关心尺寸的一些应用甚至是多余的。因此,我们通过将每个人作为粗略点(COARSOPPOINT)向每个人提供注释来提出一种基于点的基于点的框架,该框架可以是对象范围内的任何点,而不是精确的边界框。然后将该人的位置预测为图像中的2D坐标。大大简化了数据注释管道。然而,COARSOUNTPOINT注释不可避免地导致标签可靠性降低(标签不确定性)和训练期间的网络混淆。因此,我们提出了一种点自我细化方法,它以自重节奏的方式迭代地更新点注释。拟议的细化系统减轻了标签不确定性,逐步提高了本地化绩效。实验表明,我们的方法可实现对象本地化性能,同时保存注释成本高达80 $ \%$。代码括在补充材料中。
translated by 谷歌翻译
现有的神经结构搜索算法主要在具有短距离连接的搜索空间上。我们争辩说,这种设计虽然安全稳定,障碍搜索算法从探索更复杂的情景。在本文中,我们在具有长距离连接的复杂搜索空间上构建搜索算法,并显示现有的权重共享搜索算法由于存在\ TextBF {交织连接}而大部分失败。基于观察,我们介绍了一个名为\ textbf {if-nas}的简单且有效的算法,在那里我们在搜索过程中执行定期采样策略来构建不同的子网,避免在任何中的交织连接出现。在所提出的搜索空间中,IF-NAS优于随机采样和先前的重量共享搜索算法,通过显着的余量。 IF-NAS还推广到微单元的空间,这些空间更容易。我们的研究强调了宏观结构的重要性,我们期待沿着这个方向进一步努力。
translated by 谷歌翻译
在动态网络修剪中广泛探索了门控模块,以降低深神经网络的运行时间计算成本,同时保留特征的表示。尽管取得了实质性,但现有方法仍然忽略了特征和门分布之间的一致性,这可能导致所门控功能的失真。在本文中,我们提出了一种特征栅极耦合(FGC)方法,其旨在对准特征和栅极的分布。 FGC是一个即插即用模块,它包括以迭代自我监督方式进行的两个步骤组成。在第一步中,FGC利用了特征空间中的$ k $ -nearest邻居方法来探索实例邻域关系,该关系被视为自我监控信号。在第二步中,FGC利用对比学习以产生具有生成的自我监控信号的选通模块,导致特征和栅极空间内的实例邻域关系的对齐。实验结果验证了所提出的FGC方法改善了基线方法,具有显着的边缘,优于最先进的最先进的准确性计算权衡。代码是公开的。
translated by 谷歌翻译
在本文中,我们提出了一种自我监督的视觉表示学习方法,涉及生成和鉴别性代理,我们通过要求目标网络基于中级特征来恢复原始图像来专注于前者部分。与事先工作不同,主要侧重于原始和生成的图像之间的像素级相似性,我们提倡语义感知生成(Sage)以促进更丰富的语义,而不是在所生成的图像中保留的细节。实现SAGE的核心概念是使用评估者,一个在没有标签的情况下预先培训的深网络,用于提取语义感知功能。 Sage与特定于观点的功能补充了目标网络,从而减轻了密集数据增强所带来的语义劣化。我们在ImageNet-1K上执行Sage,并在包括最近的邻居测试,线性分类和细小图像识别的五个下游任务中评估预训练模型,展示了其学习更强大的视觉表示的能力。
translated by 谷歌翻译
图表卷积网络(GCN)显示了探索图形表示的显着潜力。然而,GCN聚合机制无法通过异常概括到网络上的网络,其中大多数节点具有来自不同类别的邻居,该邻居通常存在于现实网络中。为了使GCN的传播和聚合机制适合于粗源性和异常的(甚至它们的混合物),我们将块建模引入GCN的框架,以便它可以实现“块导向的分类聚合”,并自动学习不同类别邻居的相应聚合规则。通过将块建模掺入聚合过程中,GCN能够根据其同音程度判别歧视来自同性恋和异交邻居的信息。我们将我们的算法与最先进的方法进行了比较了异证问题。经验结果证明了我们在异交数据集中现有方法的新方法的优越性,同时在同性恋数据集中保持竞争性能。
translated by 谷歌翻译
自动驾驶技术的加速开发对获得大量高质量数据的需求更大。标签,现实世界数据代表性是培训深度学习网络的燃料,对于改善自动驾驶感知算法至关重要。在本文中,我们介绍了PANDASET,由完整的高精度自动车辆传感器套件生产的第一个数据集,具有无需成本商业许可证。使用一个360 {\ DEG}机械纺丝利达,一个前置,远程LIDAR和6个摄像机收集数据集。DataSet包含100多个场景,每个场景为8秒,为目标分类提供28种类型的标签和37种类型的语义分割标签。我们提供仅限LIDAR 3D对象检测的基线,LIDAR-Camera Fusion 3D对象检测和LIDAR点云分割。有关Pandaset和开发套件的更多详细信息,请参阅https://scale.com/open-datasets/pandaset。
translated by 谷歌翻译
迭代加权收缩阈值算法(IWSTA)已经显示出优于经典的未加权迭代收缩 - 阈值算法(ISTA),用于解决线性逆问题,其不同地解决属性。本文提出了一种新的熵正则化IWSTA(ERIWSTA),该IWSTA(ERIWSTA)为成本函数增加了成本函数以衡量权重的不确定性,以刺激参与问题解决的属性。然后,用拉格朗日乘法器方法解决权重,以获得简单的迭代更新。可以解释权重作为问题解决方案的贡献的概率。CT图像恢复的实验结果表明,该方法在收敛速度和恢复精度方面具有比现有方法更好的性能。
translated by 谷歌翻译
政策优化方法是使用最广泛使用的加固学习(RL)算法之一。然而,对这些方法的理论理解仍然不足。即使在eoisodic(时代)的表格设置中,\ citet的基于政策方法的最先进的理论结果也是只需$ \ tilde {o}(\ sqrt {s ^ 2ah ^ 4k })$何地在$ S $是州的数量,$ a $是行动的数量,$ h $是地平线,而$ k $是剧集的数量,还有$ \ sqrt {sh} $与信息理论下限$ \ tilde {\ omega}相比,差距(\ sqrt {sah ^ 3k})$。为了弥合这样的差距,我们提出了一种新的算法基于参考的基于参考的策略优化,在任何时间保证(\ AlgnameAcro),它具有“随时稳定”的特征。我们证明我们的算法实现$ \ tilde {o}(\ sqrt {sah ^ 3k} + \ sqrt {ah ^ 4})$后悔。当$ s> h $时,我们的算法在忽略对数因子时最佳最佳。为了我们的最佳知识,RPO-SAT是第一次计算上高效,几乎最小的表格RL最佳策略算法。
translated by 谷歌翻译
群集广泛用于文本分析,自然语言处理,图像分割和其他数据挖掘字段。作为一个有前途的聚类算法,通过允许对象属于几个类别的若干类来提供对数据的更深层次的识别,这延长了硬,模糊和可能性聚类。但是,由于需要估计比其他基于经典分区的算法更多的参数,因此当可用数据充足并且质量良好时,它才能很好地运行。为了克服这些缺点,本文通过引入转移学习策略来提出转移证据C-Mean(TECM)算法。 TECM的目标函数是通过基于ECM的目标函数在源域中引入源域中的重心而获得的目标函数,并且使用迭代优化策略来解决客观函数。另外,TECM可以适应源域和目标域中的簇数不同的情况。所提出的算法已在合成和现实世界数据集上验证。实验结果证明了与原始ECM的TECM的有效性以及其他代表多任务或转移聚类算法。
translated by 谷歌翻译
条件分布是描述响应与预测因子之间关系的基本数量。我们提出了一种学习条件分布的Wasserstein生成方法。所提出的方法使用条件发生器将已知分布转换为目标条件分布。通过匹配涉及条件发生器和目标关节分布的联合分布估计条件发生器,使用Wassersein距离作为这些关节分布的差异测量。我们建立了所提出的方法产生的条件采样分布的非渐近误差,并表明它能够减轻维度的诅咒,假设数据分布被支持在低维集上。我们进行数值实验以验证提出的方法,并将其应用于条件采样生成,非参数条件密度估计,预测不确定性量化,二抗体响应数据,图像重构和图像生成的应用。
translated by 谷歌翻译