我们呈现圆圈,基于本地隐式符号距离函数的大规模场景完成和几何精致的框架。它基于端到端的稀疏卷积网络,Circnet,共同模拟局部几何细节和全局场景结构背景,使其能够在传统3D场景数据中恢复通常产生的缺失区域的同时保留细粒度的对象细节。一种新颖的可分解渲染模块,可以进行测试时间精制以获得更好的重建质量。对现实世界和合成数据集的广泛实验表明,我们的简明框架是高效且有效的,实现比最接近竞争对手更好的重建质量,同时速度更快。
translated by 谷歌翻译
我们通过同步在点云上定义的学习函数的地图同步地图来共同寄存多种非刚性形状的新方法。尽管处理非刚性形状的能力在从计算机动画到3D数字化的各种应用中都是至关重要的,但文献仍然缺乏围绕闭塞观察到的真实,嘈杂的扫描的集合的稳健和灵活的框架。给定一组这样的点云,我们的方法首先计算通过功能映射参数化的成对对应关系。我们同时学习潜在的非正交基础函数,以有效地规范变形,同时以优雅的方式处理闭塞。为了最大限度地受益于推断成对变形字段提供的多向信息,我们通过我们的新颖和原则优化配方将成对功能映射与周期一致的整体同步。我们通过广泛的实验证明了我们的方法在注册准确性中实现了最先进的性能,同时可以灵活,高效,因为我们在统一框架中处理非刚性和多体案例并避免昂贵的优化优化通过使用基函数映射的置换。
translated by 谷歌翻译
我们引入分层可控的视频生成,在没有任何监督的情况下,将视频的初始帧分解为前景和背景层,用户可以通过简单地操纵前景掩模来控制视频生成过程。关键挑战是无监督的前景背景分离,这是模糊的,并且能够预测用户操作,可以访问未获得原始视频序列。我们通过提出两阶段学习程序来解决这些挑战。在第一阶段,随着丰富的损失和动态前景大小,我们学习如何将帧分离为前景和背景图层,并在这些图层上调节,如何使用VQ-VAE发生器生成下一帧。在第二阶段,我们通过将(参数化)控制从未来框架拟合(参数化)控制来进行该网络来预测对掩码的编辑。我们展示了该学习的有效性和更粒度的控制机制,同时说明了在两个基准数据集上的最先进的性能。我们提供了一个视频摘要以及HTTPS://gabriel-中的视频结果.Github.io/layered_controllable_video_generation
translated by 谷歌翻译
卷积神经网络(CNNS)在2D计算机视觉中取得了很大的突破。然而,它们的不规则结构使得难以在网格上直接利用CNNS的潜力。细分表面提供分层多分辨率结构,其中闭合的2 - 歧管三角网格中的每个面正恰好邻近三个面。本文推出了这两种观察,介绍了具有环形细分序列连接的3D三角形网格的创新和多功能CNN框架。在2D图像中的网格面和像素之间进行类比允许我们呈现网状卷积操作者以聚合附近面的局部特征。通过利用面部街区,这种卷积可以支持标准的2D卷积网络概念,例如,可变内核大小,步幅和扩张。基于多分辨率层次结构,我们利用汇集层,将四个面均匀地合并成一个和上采样方法,该方法将一个面分为四个。因此,许多流行的2D CNN架构可以容易地适应处理3D网格。可以通过自我参数化来回收具有任意连接的网格,以使循环细分序列连接,使子变量是一般的方法。广泛的评估和各种应用展示了SubDIVNet的有效性和效率。
translated by 谷歌翻译
一年中,人们一直在使用深度学习来解决反演问题,我们看到框架已被应用于在录音波场和速度之间建立关系(杨等人,2016)。在这里,我们将从2个角度扩展工作,一个是推出更合适的损失函数,就像我们现在一样,像素-2像素比较可能不是表征图像结构的最佳选择,我们将详细说明如何构建成本函数捕获高级功能以增强模型性能。另一种维度正在寻找更合适的神经结构,这是一个更大的图像,自动机器学习或自动的子集。有几个着名的网络,U-Net,Reset(赫尔特拉,2016)和Densenet(Huang等人,2017),他们实现了某些问题的现象结果,但很难争辩,他们是最佳反演在某些空间内没有彻底搜索的问题。在这里,我们将显示我们的架构搜索结果以进行反转。
translated by 谷歌翻译
我们建议承担义义歧义(WSD)的问题。在语言中,相同形式的单词可能取决于上下文。虽然人类可以通过他们的上下文轻松推断出这些单词的含义或光泽,但机器偶然地推断出这个任务。我们打算在黄等人的结果上复制和扩展他们设计消除这些词语的模型(Huang等人。,2019)。具体来说,我们提出了以下增强:数据集调整(Alpha Hyper-参数),集合方法,用BART和Albert更换BERT。以下GitHub存储库包含本报告中使用的所有代码,它延伸到Huang等人提供的代码。
translated by 谷歌翻译
非IID数据对联邦学习产生了艰难的挑战。在本文中,我们探讨了促进具有类似数据的客户端之间的成对合作的新颖思想。我们提出了Fedamp,一种采用联合细心信息的新方法,以促进类似客户协作更多。我们为凸和非凸模型建立了FedAMP的收敛,并提出了一种启发式方法,以进一步提高FEDAMP作为个性化模型时的联邦神经网络的性能。我们对基准数据集的广泛实验证明了所提出的方法的卓越性能。
translated by 谷歌翻译
大多数传统人群计数方法利用完全监督的学习框架来学习场景图像和人群密度映射之间的映射。在这种完全监督培训设置的情况下,需要大量昂贵且耗时的像素级注释,以产生密度图作为监控。减少昂贵标签的一种方法是利用未标记图像之间的自我结构信息和内在关系。与利用原始图像级别的这些关系和结构信息的先前方法不同,我们从潜在特征空间探讨了这种自我关系,因为它可以提取更丰富的关系和结构信息。具体而言,我们提出了S $ ^ 2 $ FPR,其可以提取结构信息,并在潜在空间中学习粗良好的金字塔特征的部分订单,以便更好地与大规模未标记的图像计数。此外,我们收集了一个新的未标记的人群计数数据集(Fudan-UCC),总共有4,000张图片进行培训。一个副产物是我们提出的S $ ^ 2 $ FPR方法可以利用未标记图像之间的潜在空间中的众多部分订单来加强模型表示能力,并减少人群计数任务的估计误差。关于四个基准数据集的大量实验,即UCF-QNRF,Shanghaitech Parta和Partb以及UCF-CC-50,与先前半监督方法相比,我们的方法显示了我们的方法。源代码和数据集可用于https://github.com/bridgeqiqi/s2fpr。
translated by 谷歌翻译
已经开发了各种深度学习模型,以从医学图像分段解剖结构,但它们通常在具有不同数据分布的另一个目标域上测试时具有差的性能。最近,已经提出了未经监督的域适应方法来缓解这种所谓的域移位问题,但大多数都是针对具有相对较小域移位的方案设计的,并且在遇到大域间隙时可能会失败。在本文中,我们提出DCDA,一种新的跨模型无监督域适应框架,用于具有大域移位的任务,例如,来自Octa和OCT图像的分段视网膜血管。 DCDA主要包括解开表示样式转移(DRST)模块和协作一致性学习(CCL)模块。 DRST将图像分解成内容组件和样式代码,并执行样式传输和图像重建。 CCL包含两个分段模型,一个用于源域,另一个用于目标域。这两种模型使用标记的数据(与相应的传输图像一起)进行监督学习,并在未标记的数据上执行协作一致性学习。每个模型都侧重于相应的单个域,并旨在产生专用域特定的分段模型。通过对视网膜船分割的广泛实验,我们的框架从Octa到Oct和Oct到Octa的OctA到Octa的骰子分数均达到目标培训的甲骨文,显着优于其他最先进的方法。
translated by 谷歌翻译
阿尔茨海默病(AD)是一种不可逆的神经发电疾病的大脑。疾病可能会导致记忆力损失,难以沟通和迷失化。对于阿尔茨海默病的诊断,通常需要一系列尺度来临床评估诊断,这不仅增加了医生的工作量,而且还使诊断结果高度主观。因此,对于阿尔茨海默病,成像手段寻找早期诊断标志物已成为一个首要任务。在本文中,我们提出了一种新颖的3DMGNET架构,该架构是多基体和卷积神经网络的统一框架,以诊断阿尔茨海默病(AD)。该模型使用Open DataSet(ADNI DataSet)培训,然后使用较小的DataSet进行测试。最后,该模型为AD VS NC分类实现了92.133%的精度,并显着降低了模型参数。
translated by 谷歌翻译