原始收集的培训数据通常带有从多个不完美的注释器中收集的单独的嘈杂标签(例如,通过众包)。通常,首先将单独的嘈杂标签汇总为一个,并应用标准培训方法。文献还广泛研究了有效的聚合方法。本文重新审视了此选择,并旨在为一个问题提供一个答案,即是否应该将单独的嘈杂标签汇总为单个单个标签或单独使用它们作为给定标签。我们从理论上分析了许多流行损失功能的经验风险最小化框架下的两种方法的性能,包括专门为使用嘈杂标签学习的问题而设计的损失功能。我们的定理得出的结论是,当噪声速率较高时,标签分离优于标签聚集,或者标记器/注释的数量不足。广泛的经验结果证明了我们的结论。
translated by 谷歌翻译
标签平滑(LS)是一种出现的学习范式,它使用硬训练标签和均匀分布的软标签的正加权平均值。结果表明,LS是带有硬标签的训练数据的常规器,因此改善了模型的概括。后来,据报道,LS甚至有助于用嘈杂的标签学习时改善鲁棒性。但是,我们观察到,当我们以高标签噪声状态运行时,LS的优势就会消失。从直觉上讲,这是由于$ \ mathbb {p}的熵增加(\ text {noisy label} | x)$当噪声速率很高时,在这种情况下,进一步应用LS会倾向于“超平滑”估计后部。我们开始发现,文献中的几种学习与噪声标签的解决方案相反,与负面/不标签平滑(NLS)更紧密地关联,它们与LS相反,并将其定义为使用负重量来结合硬和软标签呢我们在使用嘈杂标签学习时对LS和NLS的性质提供理解。在其他已建立的属性中,我们从理论上表明,当标签噪声速率高时,NLS被认为更有益。我们在多个基准测试中提供了广泛的实验结果,以支持我们的发现。代码可在https://github.com/ucsc-real/negative-label-smooth上公开获取。
translated by 谷歌翻译
跨言扬声器风格的转移旨在提取给定参考语音的语音样式,可以在任意目标扬声器的音色中复制。有关此主题的现有方法已经探索了利用语音级样式标签通过全球或本地规模样式表示进行样式转移。但是,有声读物数据集通常以本地韵律和全球类型的形式进行特征,并且很少伴有发言级风格的标签。因此,正确地将阅读方式转移到不同的扬声器上仍然是一项具有挑战性的任务。本文旨在介绍块的多尺度跨言式风格模型,以捕获有声读物的全球类型和本地韵律。此外,通过使用拟议的可切换对手分类器来解开扬声器的音色和样式,提取的阅读样式可适应不同扬声器的音色。实验结果证实,该模型设法将给定的阅读方式转移到新的目标扬声器上。在局部韵律和全球流派类型预测指标的支持下,进一步揭示了所提出的方法在多扬声器有声读物中的潜力。
translated by 谷歌翻译
在最新的联合学习研究(FL)的研究中,广泛采用了客户选择方案来处理沟通效率的问题。但是,从随机选择的非代表性子集汇总的模型更新的较大差异直接减慢了FL收敛性。我们提出了一种新型的基于聚类的客户选择方案,以通过降低方差加速FL收敛。简单而有效的方案旨在改善聚类效果并控制效果波动,因此,以采样的一定代表性生成客户子集。从理论上讲,我们证明了降低方差方案的改进。由于差异的差异,我们还提供了提出方法的更严格的收敛保证。实验结果证实了与替代方案相比,我们计划的效率超出了效率。
translated by 谷歌翻译
由于其广泛的应用,尤其是在现场理解领域,因此在3D点云上进行的实例细分一直在吸引越来越多的关注。但是,大多数现有方法都需要完全注释培训数据。在点级的手动准备地面真相标签非常繁琐且劳动密集型。为了解决这个问题,我们提出了一种新颖的弱监督方法RWSEG,该方法仅需要用一个点标记一个对象。有了这些稀疏的标签,我们使用自我注意事项和随机步行引入了一个带有两个分支的统一框架,分别将语义和实例信息分别传播到未知区域。此外,我们提出了一个跨画竞争的随机步行(CGCRW)算法,该算法鼓励不同实例图之间的竞争以解决紧密放置对象中的歧义并改善实例分配的性能。 RWSEG可以生成定性实例级伪标签。 Scannet-V2和S3DIS数据集的实验结果表明,我们的方法通过完全监督的方法实现了可比的性能,并且通过大幅度优于先前的弱监督方法。这是弥合该地区弱和全面监督之间差距的第一项工作。
translated by 谷歌翻译
误差校正技术仍然有效地通过自动语音识别(ASR)模型来完善输出。现有的端到端错误校正方法基于编码器架构架构过程在解码阶段中所有令牌,都会产生不良的延迟。在本文中,我们提出了一种利用校正操作预测的ASR误差校正方法。更具体地说,我们在编码器和解码器之间构建一个预测指标,以了解是否应保留一个令牌(“ k”),已删除(“ d”)或更改(“ C”)以限制解码仅为输入的一部分序列嵌入(“ C”令牌)用于快速推断。三个公共数据集的实验证明了拟议方法在减少ASR校正中解码过程的潜伏期中的有效性。与固体编码器基线相比,我们提出的两个模型的推理速度至少提高了3次(3.4次和5.7次),同时保持相同的准确性(分别降低0.53%和1.69%)。同时,我们生产并发布了为ASR错误校正社区做出贡献的基准数据集,以促进沿这一行的研究。
translated by 谷歌翻译
修剪技术可全面使用图像分类压缩卷积神经网络(CNN)。但是,大多数修剪方法需要一个经过良好训练的模型,以提供有用的支持参数,例如C1-核心,批处理值和梯度信息,如果预训练的模型的参数为,这可能会导致过滤器评估的不一致性不太优化。因此,我们提出了一种基于敏感性的方法,可以通过为原始模型增加额外的损害来评估每一层的重要性。由于准确性的性能取决于参数在所有层而不是单个参数中的分布,因此基于灵敏度的方法将对参数的更新具有鲁棒性。也就是说,我们可以获得对不完美训练和完全训练的模型之间每个卷积层的相似重要性评估。对于CIFAR-10上的VGG-16,即使原始模型仅接受50个时期训练,我们也可以对层的重要性进行相同的评估,并在对模型进行充分训练时的结果。然后,我们将通过量化的灵敏度从每一层中删除过滤器。我们基于敏感性的修剪框架在VGG-16,分别具有CIFAR-10,MNIST和CIFAR-100的VGG-16上有效验证。
translated by 谷歌翻译
在本文中,我们描述了一种数据驱动的方法,用于开发艾米丽(Emily),一种情绪感染的开放域聊天机器人。提出的数据增强方法可以从多转话对话中明确模拟阳性过渡(PT)情感数据。我们使用PT情感数据构建对话语料库,并将其发布供公众使用。通过使用生产的PT增强对话进行验证的对话模型,我们能够开发一种情感感染性的开放式聊天机器人,该聊天机器人在各种情绪影响度指标中表现出几乎人类的表现。我们对艾米丽(Emily)进行评估,以针对一些最先进的(SOTA)开放域聊天机器人,并显示拟议方法的有效性。
translated by 谷歌翻译
模拟在有效评估自动驾驶汽车方面发挥了重要作用。现有方法主要依赖于基于启发式的模拟,在该模拟中,交通参与者遵循某些无法产生复杂人类行为的人类编码的规则。因此,提出了反应性仿真概念,以通过利用现实世界数据来弥合模拟和现实世界交通情况之间的人类行为差距。但是,这些反应性模型可以在模拟几个步骤后轻松地产生不合理的行为,我们将模型视为失去其稳定性。据我们所知,没有任何工作明确讨论并分析了反应性仿真框架的稳定性。在本文中,我们旨在对反应性模拟进行彻底的稳定性分析,并提出一种增强稳定性的解决方案。具体而言,我们首先提出了一个新的反应模拟框架,在其中我们发现模拟状态序列的平滑度和一致性是稳定性的关键因素。然后,我们将运动学媒介物模型纳入框架中,以提高反应性模拟的闭环稳定性。此外,在本文中提出了一些新颖的指标,以更好地分析模拟性能。
translated by 谷歌翻译
在本文中,我们提出了一个新的密集检索模型,该模型通过深度查询相互作用学习了各种文档表示。我们的模型使用一组生成的伪Queries编码每个文档,以获取查询信息的多视文档表示。它不仅具有较高的推理效率,例如《香草双编码模型》,而且还可以在文档编码中启用深度查询文档的交互,并提供多方面的表示形式,以更好地匹配不同的查询。几个基准的实验证明了所提出的方法的有效性,表现出色的双重编码基准。
translated by 谷歌翻译