360 {\ deg}场景中基于图像的显着对象检测(ISOD)对于理解和应用全景信息非常重要。但是,由于缺乏大型,复杂,高分辨率且标记良好的数据集,对360 {\ deg} ISOD的研究尚未被广泛探索。为此,我们构建了一个大型360 {\ deg} ISOD数据集,具有对象级像素的依次投影(ERP),其中包含不少于2K分辨率的丰富全景场景,并且是360 {最大的数据集,是最大的数据集{ \ deg} ISOD据我们所知。通过观察数据,我们发现当前的方法在全景方案中面临三个重大挑战:不同的失真度,不连续的边缘效应和可变的对象量表。受到人类观察过程的启发,我们提出了一种基于样本自适应视图变压器(SAVT)模块的视图显着对象检测方法,并带有两个子模块,以减轻这些问题。具体而言,子模块视图变压器(VT)基于不同种类的变换,在不同视图下学习各种特征,并增强模型的变形,边缘效果和对象量表的特征耐受性。此外,亚模块样品自适应融合(SAF)是根据各种样品特征调整不同变换分支的权重,并使转换的增强功能更适当地融合。 20种最先进的ISOD方法的基准结果表明,构造的数据集非常具有挑战性。此外,详尽的实验验证了所提出的方法是实际的,并且表现优于最先进的方法。
translated by 谷歌翻译
在过去的十年中,AI AID毒品发现(AIDD)的计算方法和数据集策划的繁荣发展。但是,现实世界中的药物数据集经常表现出高度不平衡的分布,这在很大程度上被当前的文献忽略了,但可能会严重损害机器学习应用程序的公平性和概括。在这一观察结果的激励下,我们介绍了Imdrug,这是一个全面的基准标准,其开源python库由4个不平衡设置,11个AI-Ready数据集,54个学习任务和16种为不平衡学习量身定制的基线算法。它为涵盖广泛的药物发现管道(例如分子建模,药物靶标相互作用和逆合合成)的问题和解决方案提供了可访问且可定制的测试床。我们通过新的评估指标进行广泛的实证研究,以证明现有算法在数据不平衡情况下无法解决药物和药物挑战。我们认为,Imdrug为未来的研究和发展开辟了途径,在AIDD和深度不平衡学习的交集中对现实世界中的挑战开辟了道路。
translated by 谷歌翻译
最近的研究表明,即使在攻击者无法访问模型信息的黑匣子场景中,基于深模型的检测器也容易受到对抗示例的影响。大多数现有的攻击方法旨在最大程度地减少真正的积极速率,这通常显示出较差的攻击性能,因为在受攻击的边界框中可以检测到另一个最佳的边界框成为新的真实积极的框架。为了解决这一挑战,我们建议最大程度地降低真实的正速率并最大化误报率,这可以鼓励更多的假阳性对象阻止新的真实正面边界框的产生。它被建模为多目标优化(MOP)问题,通用算法可以搜索帕累托最佳选择。但是,我们的任务具有超过200万个决策变量,导致搜索效率较低。因此,我们将标准的遗传算法扩展到了随机子集选择和称为GARSDC的分裂和矛盾,从而显着提高了效率。此外,为了减轻通用算法中人口质量的敏感性,我们利用具有相似骨架的不同检测器之间的可转移性产生了梯度优先人口。与最先进的攻击方法相比,GARSDC在地图中平均减少12.0,在广泛的实验中查询约1000倍。我们的代码可以在https://github.com/liangsiyuan21/ garsdc找到。
translated by 谷歌翻译
如今,预先训练的语言模型对于问题产生(QG)任务取得了巨大成功,并明显超过传统的顺序到序列方法。但是,预训练的模型将输入段视为平坦序列,因此不了解输入段的文本结构。对于QG任务,我们将文本结构建模为答案位置和句法依赖性,并提出答案局部性建模和句法掩盖的注意,以解决这些局限性。特别是,我们以高斯偏见为局部建模,以使模型能够专注于答案的上下文,并提出一种掩盖注意机制,以使输入段落的句法结构在问题生成过程中访问。在小队数据集上进行的实验表明,我们提出的两个模块改善了强大的预训练模型ProPHETNET的性能,并将它们梳理在一起,可以通过最先进的预培训模型来实现非常有竞争力的结果。
translated by 谷歌翻译
整合多个在线社交网络(OSN)对许多下游社交挖掘任务(例如用户偏好建模,建议和链接预测)具有重要意义。但是,不幸的是,伴随着越来越多的隐私问题,泄漏敏感用户信息。如何完全利用来自不同在线社交网络的数据,同时保存用户隐私仍然无法解决。为此,我们提出了一个跨网络的社交用户嵌入框架,即DP-Crosue,以一种隐私性的方式学习用户的全面表示。我们共同考虑具有不同隐私保证的部分调整社交网络的信息。特别是,对于每个异质社交网络,我们首先引入一个混合差异隐私概念,以捕获异构数据类型的隐私期望的变化。接下来,为了找到跨社交网络的用户链接,我们进行了无监督的基于用户嵌入的对齐方式,其中通过异质网络嵌入技术实现了用户嵌入。为了进一步增强用户嵌入,一种新颖的跨网络GCN嵌入模型旨在通过那些对齐用户跨网络传输知识。在三个现实世界数据集上进行的广泛实验表明,我们的方法对用户兴趣预测任务以及捍卫用户属性推理攻击的嵌入进行了重大改进。
translated by 谷歌翻译
二进制代码相似性检测(BCSD)方法测量了两个二进制可执行代码的相似性。最近,基于学习的BCSD方法取得了巨大的成功,在检测准确性和效率方面表现优于传统的BCSD。但是,现有的研究在基于学习的BCSD方法的对抗脆弱性上相当稀疏,这会导致与安全相关的应用程序危害。为了评估对抗性的鲁棒性,本文设计了一种高效且黑色的对抗代码生成算法,即FuncFooler。 FuncFooler限制了对抗代码1)保持程序的控制流程图(CFG)和2)保持相同的语义含义。具体而言,funcfooler连续1)在恶意代码中确定脆弱的候选人,2)从良性代码中选择和插入对抗性指令,以及3)纠正对抗代码的语义副作用以满足约束。从经验上讲,我们的FuncFooler可以成功攻击包括Safe,ASM2VEC和JTRAN在内的三种基于学习的BCSD模型,它们质疑是否需要基于学习的BCSD。
translated by 谷歌翻译
在高维和不完整的矩阵中提取潜在信息是一个重要且具有挑战性的问题。潜在因子分析(LFA)模型可以很好地处理高维矩阵分析。最近,已经提出了粒子群优化(PSO)组合的LFA模型,以高效率调节超参数。但是,PSO的掺入会导致过早问题。为了解决这个问题,我们提出了一个顺序的Adam-unjusting-Antennae BAS(A2BAS)优化算法,该算法完善了由PSO成立的LFA模型获得的潜在因素。 A2BAS算法由两个子算法组成。首先,我们设计了一种改进的BAS算法,该算法可调节甲虫的触角并使用Adam进行尺寸。其次,我们实施了改进的BAS算法,以顺序优化所有行和列潜在​​因子。通过对两个实际高维矩阵的实验结果,我们证明我们的算法可以有效地解决过早的收敛问题。
translated by 谷歌翻译
跨言扬声器风格的转移旨在提取给定参考语音的语音样式,可以在任意目标扬声器的音色中复制。有关此主题的现有方法已经探索了利用语音级样式标签通过全球或本地规模样式表示进行样式转移。但是,有声读物数据集通常以本地韵律和全球类型的形式进行特征,并且很少伴有发言级风格的标签。因此,正确地将阅读方式转移到不同的扬声器上仍然是一项具有挑战性的任务。本文旨在介绍块的多尺度跨言式风格模型,以捕获有声读物的全球类型和本地韵律。此外,通过使用拟议的可切换对手分类器来解开扬声器的音色和样式,提取的阅读样式可适应不同扬声器的音色。实验结果证实,该模型设法将给定的阅读方式转移到新的目标扬声器上。在局部韵律和全球流派类型预测指标的支持下,进一步揭示了所提出的方法在多扬声器有声读物中的潜力。
translated by 谷歌翻译
DBSCAN由于其简单性和实用性而被广泛用于许多科学和工程领域。但是,由于其高灵敏度参数,聚类结果的准确性在很大程度上取决于实践经验。在本文中,我们首先提出了一种新颖的深钢筋学习指导自动DBSCAN参数搜索框架,即DRL-DBSCAN。该框架通过将聚类环境视为马尔可夫决策过程来模拟调整参数搜索方向的过程,该过程旨在在没有手动帮助的情况下找到最佳的聚类参数。 DRL-DBSCAN使用弱监督的奖励培训策略网络,通过与群集进行交互来了解不同特征分布的最佳聚类参数搜索策略。此外,我们还提出了一个由数据规模驱动的递归搜索机制,以有效且可控制地处理大参数空间。基于拟议的四种工作模式,在五个人工和现实世界数据集上进行了广泛的实验。离线和在线任务的结果表明,DRL-DBSCCUN不仅始终如一地提高DBSCAN聚类精度高达26%和25%,而且可以稳定地找到具有较高计算效率的主要参数。该代码可在https://github.com/ringbdstack/drl-dbscan上找到。
translated by 谷歌翻译
最近,对深度学习进行了广泛的研究,以加速动态磁共振(MR)成像,并取得了令人鼓舞的进步。但是,如果没有完全采样的参考数据进行培训,当前方法可能在恢复细节或结构方面具有有限的能力。为了应对这一挑战,本文提出了一个自我监督的协作学习框架(SelfCollearn),以从无效的K-Space数据中进行准确的动态MR图像重建。拟议的框架配备了三个重要组成部分,即双网络协作学习,重新启动数据增强和专门设计的共同培训损失。该框架可以灵活地与数据驱动的网络和基于模型的迭代未滚动网络集成。我们的方法已在体内数据集上进行了评估,并将其与四种最新方法进行了比较。结果表明,我们的方法具有很强的能力,可以从无效的K空间数据捕获直接重建的基本和固有表示形式,因此可以实现高质量且快速的动态MR成像。
translated by 谷歌翻译