生成使用机器学习的给定文本描述的图像具有大大提高了剪辑图像文本编码器模型等技术的提高;然而,目前的方法缺乏对要生成的图像样式的艺术控制。我们介绍了Styleclipdraw,它为ClipDraw文本到绘制的合成模型添加了样式损耗,以允许通过文本控制内容的除了内容之外的合成附图的艺术控制。尽管在生成的图像上执行解耦样式转移仅影响纹理,但是我们所提出的耦合方法能够在纹理和形状中捕获样式,表明图表的样式与绘图过程本身耦合。更多的结果和我们的代码可在https://github.com/pschaldanbrand/styleclipdraw中获得
translated by 谷歌翻译
当任何安全违规可能导致灾难性失败时,赛车要求每个车辆都能在其物质范围内驾驶。在这项工作中,我们研究了自主赛车的安全强化学习(RL)的问题,使用车辆的自我摄像机视图和速度作为输入。鉴于任务的性质,自主代理需要能够1)识别并避免复杂的车辆动态下的不安全场景,而2)在快速变化的环境中使子第二决定。为了满足这些标准,我们建议纳入汉密尔顿 - 雅各(HJ)可达性理论,是一般非线性系统的安全验证方法,进入受约束的马尔可夫决策过程(CMDP)框架。 HJ可达性不仅提供了一种了解安全的控制理论方法,还可以实现低延迟安全验证。尽管HJ可达性传统上不可扩展到高维系统,但我们证明了具有神经逼近的,可以直接在视觉上下文中学习HJ安全值 - 迄今为止通过该方法研究的最高尺寸问题。我们在最近发布的高保真自主赛车环境中评估了我们在几个基准任务中的方法,包括安全健身房和学习(L2R)。与安全健身房的其他受约束的RL基线相比,我们的方法非常少的限制性违规,并在L2R基准任务上实现了新的最先进结果。我们在以下匿名纸质网站提供额外可视化代理行为:https://sites.google.com/view/safeautomouracing/home
translated by 谷歌翻译
感知,规划,估算和控制的当代方法允许机器人在不确定,非结构化环境中的远程代理中稳健运行。此进度现在创造了机器人不仅在隔离,而且在我们的复杂环境中运行的机器人。意识到这个机会需要一种高效且灵活的媒介,人类可以与协作机器人沟通。自然语言提供了一种这样的媒体,通过对自然语言理解的统计方法的重大进展,现在能够解释各种自由形式命令。然而,大多数当代方法需要机器人环境的详细,现有的空间语义地图,这些环境模拟了话语可能引用的可能引用的空间。因此,当机器人部署在新的,先前未知或部分观察到的环境中时,这些方法发生故障,特别是当环境的心理模型在人类运营商和机器人之间不同时。本文提供了一种新的学习框架的全面描述,允许现场和服务机器人解释并正确执行先验未知,非结构化环境中的自然语言指令。对于我们的方法而不是我们的语言作为“传感器” - 在话语中隐含的“传感器” - 推断的空间,拓扑和语义信息,然后利用这些信息来学习在潜在环境模型上的分布。我们将此分布纳入概率,语言接地模型中,并在机器人的动作空间的象征性表示中推断出分布。我们使用模仿学习来确定对环境和行为分布的原因的信仰空间政策。我们通过各种导航和移动操纵实验评估我们的框架。
translated by 谷歌翻译
对于有效的人机组织,机器人能够与人类运营商分享视觉感知是重要的。在恶劣的远程协作设置中,可以利用诸如AutoEncoder的数据压缩技术以以紧凑的形式以潜在变量获得和发送数据。另外,为了确保即使在不稳定环境下的实时运行时间性能,需要任何时间估计方法,其可以从不完整的信息重建完整内容。在这种情况下,我们提出了一种潜在变量的归档方法,其元素部分地丢失。要实现AnyTime属性,只有少数变量维度,利用类别级的先前信息至关重要。无论每个训练数据点的标签如何,简单地假设变形自身额外器中使用的先前分布是各向同性的高斯。这种类型的扁平事先使得难以从类别级分布中执行估算。我们通过利用潜在空间中的特定类别的多模态之前分发来克服此限制。通过根据剩余元素查找特定模态,可以采样部分传输数据的缺失元素。由于该方法旨在使用部分元素进行任何时间估计,因此它也可以应用于数据过压缩。基于ModelNet和Pascal3D数据集的实验,所提出的方法在AutoEncoder和变形式自动探测器上始终如一地呈现出高达70%的数据丢失。
translated by 谷歌翻译
关键时期是阶段,其中幼儿的大脑在喷射中发展。为促进儿童认知发展,在本阶段至关重要。然而,目前尚不清楚是否存在对AI代理商的培训也存在这种关键时期。与人类幼儿相似,顺序引导和多模式相互作用可能显着提高AI代理的培训效率。为了验证这一假设,我们将此概念调整到AI代理商中学习的关键时期,并调查AI代理人的虚拟环境中的关键时期。我们在加固学习(RL)框架中正规化关键时期和幼儿指导学习。然后,我们建立了一个像veca工具包的幼儿环境,以模仿人类托儿的学习特征。我们研究三个离散的相互互动水平:弱导兵指导(稀疏奖励),中等导师指导(助手奖励)和导师演示(行为克隆)。我们还介绍了由30,000个现实世界图像组成的EAVE数据集,以完全反映幼儿的观点。我们从两个角度评估关键时期对AI代理商的影响:如何以及何时在统一和多式化学习中最佳。我们的实验结果表明,Uni-和多式联运剂,具有中等导师的指导和100万和200万次训练步骤的关键期显示出明显的改进。我们通过在EAVE数据集上传输学习来验证这些结果,并在同一关键时期和指导下找到性能进步。
translated by 谷歌翻译
本文致力于构建新的快速评估模型,用于预测混凝土微结构中的2D裂纹路径。该模型产生分段线性裂缝路径,使用Markov链模型选择的分段点。Markov Chain Kernel涉及机械兴趣的局部指标,并且使用称为XPER的内聚容积有限元求解器从数值全场2D模拟中学到的参数。与XPER的模拟相比,所产生的模型表现出CPU时间的急剧提高。
translated by 谷歌翻译
预计未来几十年的全球粮食不安全将加速气候变化率和人口迅速增加。在这种静脉中,重要的是在每种饮食生产水平上消除效率低下。最近深入学习的进步可以帮助降低这种效率低下,但他们的申请尚未成为整个行业的主流,以大规模的规模诱导经济成本。为此,已将现代技术(如CNNS(卷积神经网络)应用于RPQD(原始产生质量检测)任务。另一方面,变压器在其他方式中的视野中的成功首次亮相使我们能够在RPQD中预计这些基于变压器的模型更好的性能。在这项工作中,我们专门调查了最近的最先进的水流(移位的Windows)变压器,这些变压器可以在窗口和窗口间的方式中计算自我关注。我们将Swin变压器与CNN模型进行比较四个RPQD图像数据集,每个CNN模型都包含不同种类的生成:水果和蔬菜,鱼类,猪肉和牛肉。我们观察到Swin Transformer不仅实现了更好或更有竞争力的性能,而且还具有数据和计算效率,使其成为现实世界的实际部署的理想选择。据我们所知,这是第一个对RPQD任务的大规模实证研究,我们希望在未来的作品中更加关注。
translated by 谷歌翻译
学术文学的数量,如学术会议论文和期刊,全世界迅速增加,持续研究元数据提取。然而,由于期刊出版商的不同布局格式,高性能的元数据提取仍然具有挑战性。为了适应学术期刊布局的多样性,我们提出了一种具有三种特征的新型布局感知元数据提取(LAME)框架(例如,自动布局分析的设计,施工大型元数据训练集,以及建设布局 - 元签名。我们使用PDFminer设计了自动布局分析。基于布局分析,自动提取大量的元数据分离训练数据,包括标题,摘要,作者姓名,作者附属组织和关键字。此外,我们构建了Layout-Metabert以从具有不同布局格式的学术期刊中提取元数据。具有不同布局格式的未经布局格式的USADATA提取中的稳健性能(MACRO-F1,93.27%)的实验结果表现出鲁棒性能(MACRO-F1,93.27%)。
translated by 谷歌翻译
证据回归网络(ENET)估计连续的目标及其预测性不确定性,没有昂贵的贝叶斯模型平均。然而,由于eNET的原始损失功能的梯度收缩问题,因此可能是不准确的预测目标,负面日志边缘似然(NLL)丢失。在本文中,目的是通过解决梯度收缩问题来提高eNET的预测精度,同时保持其有效的不确定性估计。提出了一个多任务学习(MTL)框架,称为MT-ENET,以实现此目标。在MTL中,我们将LipsChitz修改的均方误差(MSE)丢失函数定义为另一个损耗并将其添加到现有的NLL损耗中。 Lipschitz修改后的MSE损失旨在通过动态调整其Lipschitz常数,减轻与NLL损耗的渐变冲突。通过这样做,Lipschitz MSE损失不会扰乱NLL损失的不确定性估计。 MT-ENET增强了eNET的预测精度,而不会在合成数据集和现实世界基准上丢失不确定性估计能力,包括药物 - 目标亲和力(DTA)回归。此外,MT-ENET在DTA基准测试中显示出显着的校准和分布外检测能力。
translated by 谷歌翻译
人类通常通过利用关于他们正在交谈的人的主题和背景信息的先验知识来进行对话。然而,现有的会话代理和数据集不考虑此类综合信息,因此它们有一个限制生成知识和人格正确融合的话语。为解决此问题,我们介绍了一个呼叫进行定制对话(焦点)数据集,其中包括用户的角色和维基百科知识建立了自定义答案。为了评估预先训练的语言模型的信息和定制话语的能力,我们利用BART和GPT-2以及基于变压器的模型。我们评估了他们的生成能力,自动分数并对人类评估进行定性结果。我们仔细检查模型是否反映了我们提出的两个子任务,人物接地(PG)和知识接地(KG)的充分人物和知识。此外,我们表明我们的数据的话语通过接地质量评估来构建具有正确的知识和角色。
translated by 谷歌翻译