深度异常检测已被证明是几个领域的有效和强大的方法。自我监督学习的引入极大地帮助了许多方法,包括异常检测,其中使用简单的几何变换识别任务。然而,由于它们缺乏更精细的特征,因此这些方法在细粒度问题上表现不佳,并且通常高度依赖于异常类型。在本文中,我们探讨了使用借口任务的自我监督异常检测的每个步骤。首先,我们介绍了专注于不同视觉线索的新型鉴别和生成任务。一部分拼图拼图任务侧重于结构提示,而在每个件上使用色调旋转识别进行比色法,并且执行部分重新染色任务。为了使重新着色任务更关注对象而不是在后台上关注,我们建议包括图像边界的上下文颜色信息。然后,我们介绍了一个新的分配检测功能,并与其他分配检测方法相比,突出了其更好的稳定性。随之而来,我们还试验不同的分数融合功能。最后,我们在具有经典对象识别的对象异常组成的综合异常检测协议上评估我们的方法,用细粒度分类和面部反欺骗数据集的局部分类和局部异常的样式异常。我们的模型可以更准确地学习使用这些自我监督任务的高度辨别功能。它优于最先进的最先进的相对误差改善对象异常,40%的面对反欺骗问题。
translated by 谷歌翻译
本文致力于构建新的快速评估模型,用于预测混凝土微结构中的2D裂纹路径。该模型产生分段线性裂缝路径,使用Markov链模型选择的分段点。Markov Chain Kernel涉及机械兴趣的局部指标,并且使用称为XPER的内聚容积有限元求解器从数值全场2D模拟中学到的参数。与XPER的模拟相比,所产生的模型表现出CPU时间的急剧提高。
translated by 谷歌翻译
概念漂移过程挖掘(PM)是一种挑战,因为古典方法假设进程处于稳态,即事件共享相同的进程版本。我们对这些领域的交叉点进行了系统的文献综述,从而审查了过程采矿中的概念漂移,并提出了用于漂移检测和在线流程挖掘的现有技术的分类,以实现不断发展的环境。现有的作品描绘了(i)PM仍然主要关注离线分析,并且(ii)由于缺乏公共评估协议,数据集和指标,过程中的概念漂移技术的评估是麻烦的。
translated by 谷歌翻译
我们研究了具有预处理结果数据的实验研究的最佳设计。估计平均处理效果是治疗和控制单元的加权平均结果之间的差异。许多常用的方法符合该配方,包括差分估计器和各种合成控制技术。我们提出了几种方法,用于结合重量选择一组处理的单位。观察问题的NP硬度,我们介绍了混合整数编程配方,可选择处理和控制集和单位权重。我们证明,这些提出的方法导致定性不同的实验单元进行治疗。我们根据美国劳动统计局的公开数据使用模拟,这些数据在与随机试验等简单和常用的替代品相比时,表现出平均平方误差和统计功率的改进。
translated by 谷歌翻译
适当给药的辐射对放疗中的患者安全至关重要。目前的质量保证在很大程度上取决于同行评审过程,其中医生对每个患者的治疗计划的同行评审,包括剂量和分馏。但是,这样的过程是手动和费力。由于时间限制和案例,医生可能无法识别错误。我们设计了一种新型的处方异常检测算法,利用历史数据来预测异常情况。这样的工具可以作为电子对等体,他们将协助同行评审过程为患者提供额外的安全性。在我们的主要模型中,我们创建了两个不相似度量,R和F.R定义了新患者的处方来自历史处方的距离。 F表示患者功能集的远距离来自该组的具有相同或类似的处方。如果指标大于特定的优化截止值,则我们标记处方。我们使用胸癌患者(n = 2356)作为一个例子并提取七个特征。在这里,我们报告我们的测试F1评分,不同治疗技术组的75%-94%。我们还通过三个胸专家进行模拟同行评审,独立验证我们的结果。与手动对等审查医生相比,我们的模型具有较低的2次错误率。我们的型号与传统机器学习算法相比具有许多优点,特别是它不会遭受阶级不平衡。它还可以解释为什么它标记每种情况并单独的处方和非处方相关的功能而不从数据学习。
translated by 谷歌翻译
我们介绍了一种普遍的策略,可实现有效的多目标勘探。它依赖于adagoal,一种基于简单约束优化问题的新的目标选择方案,其自适应地针对目标状态,这既不是太困难也不是根据代理目前的知识达到的。我们展示了Adagoal如何用于解决学习$ \ epsilon $ -optimal的目标条件的政策,以便在$ L $ S_0 $ S_0 $奖励中获得的每一个目标状态,以便在$ S_0 $中获取。免费马尔可夫决策过程。在标准的表格外壳中,我们的算法需要$ \ tilde {o}(l ^ 3 s a \ epsilon ^ { - 2})$探索步骤,这几乎很少最佳。我们还容易在线性混合Markov决策过程中实例化Adagoal,其产生具有线性函数近似的第一目标导向的PAC保证。除了强大的理论保证之外,迈克纳队以现有方法的高级别算法结构为锚定,为目标条件的深度加固学习。
translated by 谷歌翻译
在神经形态计算中,人工突触提供了一种基于来自神经元的输入来设置的多重导电状态,类似于大脑。可能需要超出多重权重的突触的附加属性,并且可以取决于应用程序,需要需要从相同材料生成不同的突触行为。这里,我们基于使用磁隧道结和磁畴壁的磁性材料测量人造突触。通过在单个磁隧道结下面的畴壁轨道中制造光刻槽口,我们实现了4-5个稳定的电阻状态,可以使用自旋轨道扭矩电气可重复控制。我们分析几何形状对突触行为的影响,表明梯形装置具有高可控性的不对称性重量,而直线装置具有较高的随机性,但具有稳定的电阻水平。设备数据被输入到神经形态计算模拟器中以显示特定于应用程序突触函数的有用性。实施应用于流式的时尚 - MNIST数据的人工神经网络,我们表明梯形磁突出可以用作高效在线学习的元塑功能。为CiFar-100图像识别实施卷积神经网络,我们表明直流突触由于其电阻水平的稳定性而达到近乎理想的推理精度。这项工作显示多重磁突触是神经形态计算的可行技术,并为新兴人工突触技术提供设计指南。
translated by 谷歌翻译
Paris-Carla-3d是由移动激光器和相机系统构建的几个浓彩色点云的数据集。数据由两组具有来自开源Carla模拟器(700百万分)的合成数据和在巴黎市中获取的真实数据(6000万分),因此Paris-Carla-3d的名称。此数据集的一个优点是在开源Carla模拟器中模拟了相同的LIDAR和相机平台,因为用于生产真实数据的开源Carla Simulator。此外,使用Carla的语义标记的手动注释在真实数据上执行,允许将转移方法从合成到实际数据进行测试。该数据集的目的是提供一个具有挑战性的数据集,以评估和改进户外环境3D映射的困难视觉任务的方法:语义分段,实例分段和场景完成。对于每项任务,我们描述了评估协议以及建立基线的实验。
translated by 谷歌翻译
展示了在欧洲生物安全卓越网络框架内设计和获取的新的多模态生物识别数据库。它由600多个个人在三种情况下在三种情况下获得:1)在互联网上,2)在带台式PC的办公环境中,以及3)在室内/室外环境中,具有移动便携式硬件。这三种方案包括音频/视频数据的共同部分。此外,已使用桌面PC和移动便携式硬件获取签名和指纹数据。此外,使用桌面PC在第二个方案中获取手和虹膜数据。收购事项已于11名欧洲机构进行。 BioSecure多模式数据库(BMDB)的其他功能有:两个采集会话,在某些方式的几种传感器,均衡性别和年龄分布,多式化现实情景,每种方式,跨欧洲多样性,人口统计数据的可用性,以及人口统计数据的可用性与其他多模式数据库的兼容性。 BMDB的新型收购条件允许我们对单币或多模式生物识别系统进行新的具有挑战性的研究和评估,如最近的生物安全的多模式评估活动。还给出了该活动的描述,包括来自新数据库的单个模式的基线结果。预计数据库将通过2008年通过生物安全协会进行研究目的
translated by 谷歌翻译
课堂表达学习是可解释的监督机器学习的分支,越来越重要。在描述逻辑中的类表达式学习的大多数现有方法是搜索算法或基于硬规则的。特别地,基于细化运营商的方法遭受可扩展性问题,因为它们依赖于启发式功能来探索每个学习问题的大搜索空间。我们提出了一系列新的方法,我们配合了合成方法。此系列的实例是从提供的示例中直接计算类表达式。因此,它们不受基于搜索方法的运行时限制,也不存在于基于硬规则的方法的缺乏灵活性。我们研究了这种新型方法的三个实例,该方法使用轻量级神经网络架构从积极的例子组合中综合类表达式。他们对四个基准数据集的评估结果表明,它们可以在平均水平上有效地合成相对于输入示例的高质量类表达。此外,与最先进的方法的比较Celoe和Eltl表明我们在大型本体中实现了更好的F措施。为了重现性目的,我们提供了我们的实施以及在HTTPS://github.com/conceptLengtlearner/nces的公共Github存储库中的预先训练模型
translated by 谷歌翻译