虹膜识别技术在过去几十年中吸引了日益增长的兴趣,我们目睹了从研究实验室迁移到现实世界应用的迁移。该技术的部署提出了关于与这些系统相关的主要漏洞和安全威胁的问题。在这些威胁中,介绍攻击突出了一些最相关和研究的。呈现攻击可以被定义为人类特征或工件的呈现直接到试图干扰其正常操作的生物识别系统的捕获设备。在虹膜的情况下,这些攻击包括使用真正的虹膜以及具有不同级别的复杂程度的工件,例如照片或视频。本章介绍了已开发的虹膜演示攻击检测(PAD)方法,以降低呈现攻击所带来的风险。首先,我们总结了最受欢迎的攻击类型,包括地址的主要挑战。其次,我们提出了一个介绍攻击检测方法的分类,作为这一非常活跃的研究区域的简要介绍。最后,我们讨论了这些方法根据实际应用中最重要的情况识别虹膜识别系统。
translated by 谷歌翻译
本章的主要范围是作为面部介绍攻击检测的介绍,包括过去几年的关键资源和领域的进步。下一页呈现了面部识别系统可以面对的不同演示攻击,其中攻击者向传感器提供给传感器,主要是相机,呈现攻击仪器(PAI),这通常是照片,视频或掩码,试图冒充真正的用户。首先,我们介绍了面部识别的现状,部署水平及其挑战。此外,我们介绍了面部识别系统可能暴露的漏洞和可能的攻击,表明呈现攻击检测方法的高度重要性。我们审核不同类型的演示攻击方法,从更简单到更复杂,在哪个情况下它们可能是有效的。然后,我们总结了最受欢迎的演示文稿攻击检测方法来处理这些攻击。最后,我们介绍了研究界使用的公共数据集,以探索面部生物识别性的脆弱性,以呈现攻击,并对已知的PAI制定有效的对策。
translated by 谷歌翻译
展示了在欧洲生物安全卓越网络框架内设计和获取的新的多模态生物识别数据库。它由600多个个人在三种情况下在三种情况下获得:1)在互联网上,2)在带台式PC的办公环境中,以及3)在室内/室外环境中,具有移动便携式硬件。这三种方案包括音频/视频数据的共同部分。此外,已使用桌面PC和移动便携式硬件获取签名和指纹数据。此外,使用桌面PC在第二个方案中获取手和虹膜数据。收购事项已于11名欧洲机构进行。 BioSecure多模式数据库(BMDB)的其他功能有:两个采集会话,在某些方式的几种传感器,均衡性别和年龄分布,多式化现实情景,每种方式,跨欧洲多样性,人口统计数据的可用性,以及人口统计数据的可用性与其他多模式数据库的兼容性。 BMDB的新型收购条件允许我们对单币或多模式生物识别系统进行新的具有挑战性的研究和评估,如最近的生物安全的多模式评估活动。还给出了该活动的描述,包括来自新数据库的单个模式的基线结果。预计数据库将通过2008年通过生物安全协会进行研究目的
translated by 谷歌翻译
提出了一种使用基于质量相关特征的新颖的指纹参数化的新的基于软件的活性检测方法。该系统在高度挑战的数据库上测试,该数据库包括超过10,500个实际和假图像,其中包含不同技术的五个传感器,并在材料和程序中覆盖各种直接攻击情景,然后遵循生成胶状手指。所提出的解决方案证明对多场景数据集具有强大,并呈现90%正确分类的样本的总速率。此外,所呈现的活性检测方法具有上述从手指中仅需要一个图像的先前研究的技术的额外优点,以决定它是真实还是假的。最后一个特征提供了具有非常有价值的功能的方法,因为它使其更不具有侵入性,更多的用户友好,更快,并降低其实现成本。
translated by 谷歌翻译
开发了一种能够处理NMR图像的算法,用于使用机器学习技术来分析以检测脑肿瘤的存在。
translated by 谷歌翻译
在本文中,我们为多机器人系统提供了一种分散和无通信的碰撞避免方法,该系统考虑了机器人定位和感测不确定性。该方法依赖于计算每个机器人的不确定感知安全区域,以在高斯分布的不确定性的假设下在环境中导航的其他机器人和环境中的静态障碍物。特别地,在每次步骤中,我们为每个机器人构建一个机器人约束的缓冲不确定性感知的voronoI细胞(B-UAVC)给出指定的碰撞概率阈值。通过将每个机器人的运动约束在其对应的B-UAVC内,即机器人和障碍物之间的碰撞概率仍然可以实现概率碰撞避免。所提出的方法是分散的,无通信,可扩展,具有机器人的数量和机器人本地化和感测不确定性的强大。我们将方法应用于单积分器,双积分器,差动驱动机器人和具有一般非线性动力学的机器人。对地面车辆,四轮车和异质机器人团队进行广泛的模拟和实验,以分析和验证所提出的方法。
translated by 谷歌翻译
交通预测模型依赖需要感测,处理和存储的数据。这需要部署和维护交通传感基础设施,往往导致不适合的货币成本。缺乏感测的位置可以与合成数据模拟相辅相成,进一步降低交通监测所需的经济投资。根据类似道路的数据分布,其中最常见的数据生成方法之一包括产生实际的流量模式。检测具有相似流量的道路的过程是这些系统的关键点。但是,在不收集目标位置收集数据,没有用于该相似性的搜索可以使用流量度量。我们提出了一种通过检查道路段的拓扑特征来发现具有可用流量数据的方法的方法。相关的拓扑功能被提取为数值表示(嵌入式)以比较不同的位置,并最终根据其嵌入之间的相似性找到最相似的道路。检查该新颖选择系统的性能,并与更简单的流量估计方法进行比较。找到类似的数据源后,使用生成方法来合成流量配置文件。根据感知道路的交通行为的相似性,可以使用一条路的数据来馈送生成方法。在合成样品的精度方面分析了几种代理方法。最重要的是,这项工作打算促进进一步的研究努力提高综合交通样本的质量,从而降低对传感基础设施的需求。
translated by 谷歌翻译
磁共振成像(MRI)是一种重要的非侵入性临床工具,可以产生高分辨率和可重复的图像。然而,高质量的MR图像需要长时间的扫描时间,这导致患者的疲惫和不适,由于患者的自愿运动和非自愿的生理运动,诱导更多人工制品。为了加速扫描过程,通过K空间欠采样和基于深度学习的重建的方法已经推广。这项工作引进了SwinMR,这是一种基于新型的Swin变压器的快速MRI重建方法。整个网络由输入模块(IM)组成,特征提取模块(FEM)和输出模块(OM)。 IM和OM是2D卷积层,并且FEM由级联的残留的Swin变压器块(RSTBS)和2D卷积层组成。 RSTB由一系列SWIN变压器层(STL)组成。 STL的Shifted Windows多头自我关注(W-MSA / SW-MSA)在移位的窗口中执行,而不是整个图像空间中原始变压器的多头自我关注(MSA)。通过使用灵敏度图提出了一种新的多通道损耗,这被证明是为了保留更多纹理和细节。我们在Calgary-Campinas公共大脑MR DataSet中进行了一系列比较研究和消融研究,并在多模态脑肿瘤细分挑战2017年数据集中进行了下游分段实验。结果表明,与其他基准方法相比,我们的SwinMR实现了高质量的重建,并且它在噪音中断和不同的数据集中显示了不同的遮光罩掩模的稳健性。该代码在https://github.com/ayanglab/swinmr公开使用。
translated by 谷歌翻译
人类将他们的手和身体一起移动,沟通和解决任务。捕获和复制此类协调活动对于虚拟字符至关重要,以实际行为行为。令人惊讶的是,大多数方法分别对待身体和手的3D建模和跟踪。在这里,我们制定了一种手和身体的型号,并将其与全身4D序列合理。当扫描或捕获3D中的全身时,手很小,通常是部分闭塞,使其形状和难以恢复。为了应对低分辨率,闭塞和噪音,我们开发了一种名为Mano(具有铰接和非刚性变形的手模型)的新型号。曼诺从大约1000个高分辨率的3D扫描中学到了31个受试者的手中的大约一定的手。该模型是逼真的,低维,捕获非刚性形状的姿势变化,与标准图形封装兼容,可以适合任何人类的手。 Mano提供从手姿势的紧凑型映射,以构成混合形状校正和姿势协同效应的线性歧管。我们将Mano附加到标准参数化3D体形状模型(SMPL),导致完全铰接的身体和手部模型(SMPL + H)。我们通过用4D扫描仪捕获的综合体,自然,自然,自然的受试者的活动来说明SMPL + H.该配件完全自动,并导致全身型号,自然地移动详细的手动运动和在全身性能捕获之前未见的现实主义。模型和数据在我们的网站上自由用于研究目的(http://mano.is.tue.mpg.de)。
translated by 谷歌翻译
在本文中,我们开发Faceqgen,基于生成的对抗网络的面部图像的No参考质量评估方法,其产生与面部识别精度相关的标量质量测量。 Faceqgen不需要标记为培训的质量措施。它从使用SCFace数据库从头开始培训。 Faceqgen将图像恢复应用于未知质量的面部图像,将其转换为规范的高质量图像,即正面姿势,均匀的背景等。质量估计是原始图像和恢复图像之间的相似性,因为低质量图像由于恢复而体验更大的变化。我们比较三种不同的数值质量措施:a)原始和恢复的图像之间的MSE,b)他们的SSIM和c)甘杆菌鉴别器的输出得分。结果表明,面部QGEN的质量措施是面部识别准确性的良好估计。我们的实验包括与针对面部和一般图像设计的其他质量评估方法的比较,以便在现有技术中定位面部。这种比较表明,即使面对面识别准确性预测方面不超过最佳现有的面部质量评估方法,它也实现了足够的结果,以证明质量估计的半监督学习方法的潜力(特别是数据 - 基于每个受试者的单一高质量图像的驱动学习),具有提高未来性能的能力,通过对模型的充分改进以及竞争方法的显着优势,不需要质量标签的发展。这使得Faceqgen灵活且可扩展,而无需昂贵的数据策激。
translated by 谷歌翻译