胎儿超声(US)中胎盘的自动分割由于(i)(i)胎盘外观的高度多样性而具有挑战性我们禁止在妊娠晚期进行整个胎盘评估的观点。在这项工作中,我们通过多任务学习方法解决了这三个挑战,该方法结合了单个卷积神经网络中胎盘位置(例如,前,后部)和语义胎盘分段的分类。通过分类任务,模型可以从更大,更多样化的数据集中学习,同时在有限的训练集条件下提高分割任务的准确性。通过这种方法,我们研究了多个评估者的注释的变异性,并表明我们的自动分割(前胎盘的骰子为0.86,后胎盘的骰子为0.83),与观察者内和观察者间的变异性相比,我们的自动段性能达到了人级的性能。最后,我们的方法可以使用由三个阶段组成的多视图US采集管道提供整个胎盘分割:多探针图像采集,图像融合和图像分段。这会导致对较大结构(例如胎盘中的胎盘)的高质量分割,其图像伪像降低,这超出了单个探针的视野。
translated by 谷歌翻译
在这项工作中,我们介绍了DCGAN的实证研究,包括超参数启发式方法和图像质量评估,以解决研究数据集的稀缺性,以研究胎儿头超声。我们提出了实验,以显示不同图像分辨率,时期,数据集大小输入和对四个指标质量图像评估的学习速率的影响:互信息(MI),fr \'Echet Inception Inteption距离(FID),峰值信号到峰值信号-noise比率(PSNR)和局部二进制模式矢量(LBPV)。结果表明,FID和LBPV与临床图像质量评分具有更强的关系。复制此工作的资源可在\ url {https://github.com/budai4medtech/miua2022}中获得。
translated by 谷歌翻译
随着深度学习算法在时间序列分类中的应用越来越多,尤其是在高风化场景中,解释这些算法的相关性成为关键。尽管时间序列的可解释性研究已经增长,但从业者的可访问性仍然是一个障碍。没有统一的API或框架,使用的可解释性方法及其可视化的使用方式多样。为了缩小这一差距,我们介绍了TSInterpret易于扩展的开源Python库,用于解释将现有解释方法结合到一个统一框架中的时间序列分类器的预测。库功能(i)最先进的可解释性算法,(ii)公开了统一的API,使用户能够始终如一地使用解释,并为每种说明提供合适的可视化。
translated by 谷歌翻译
因果鉴定是因果推理文献的核心,在该文献中提出了完整的算法来识别感兴趣的因果问题。这些算法的有效性取决于访问正确指定的因果结构的限制性假设。在这项工作中,我们研究了可获得因果结构概率模型的环境。具体而言,因果图中的边缘是分配的概率,例如,可能代表来自领域专家的信念程度。另外,关于边缘的不确定的可能反映了特定统计检验的置信度。在这种情况下自然出现的问题是:给定这样的概率图和感兴趣的特定因果效应,哪些具有最高合理性的子图是什么?我们表明回答这个问题减少了解决NP-HARD组合优化问题,我们称之为边缘ID问题。我们提出有效的算法来近似此问题,并评估我们针对现实世界网络和随机生成图的算法。
translated by 谷歌翻译
从一个或多个未分类桩中挑选一个或多个物体对于机器人系统而言仍然是不平凡的。当桩由包含彼此纠缠的单个项目的颗粒材料(GM)组成时,尤其如此,导致挑选出更多的选择。这种容易发生的GM的关键特征之一是从桩中的主要物体延伸的突起存在。这项工作描述了后者在引起机械纠缠及其对选择一致性的影响方面所扮演的角色。 IT报告了实验,其中采摘具有不同突出长度(PLS)的GMS导致挑选质量差异增加了76%,这表明PL是采摘策略设计中的一项信息功能。此外,为了应对这种效果,它提出了一种新的传播(SNP)方法,可大大减少纠结,从而使选择更加一致。与试图从桩中的无缠结点进行选择的先前方法相比,提出的方法导致选择误差(PE)的降低高达51%,并显示出对先前看不见的GMS的良好概括。
translated by 谷歌翻译
本文提出了一个理论和计算框架,用于基于非欧几里得收缩理论对隐式神经网络的训练和鲁棒性验证。基本思想是将神经网络的鲁棒性分析作为可及性问题,使用(i)$ \ ell _ {\ infty} $ - norm inort input-utput-optup-utput lipschitz常数和(ii)网络的紧密包含函数到过度陈列在其可达集合中。首先,对于给定的隐式神经网络,我们使用$ \ ell _ {\ infty} $ - 矩阵测量方法来为其适应性良好的条件提出足够的条件,设计一种迭代算法来计算其固定点,并为其$ \提供上限ell_ \ infty $ -Norm输入输出Lipschitz常数。其次,我们介绍了一个相关的嵌入式网络,并表明嵌入式网络可用于提供原始网络的可触及式集合的$ \ ell_ \ infty $ -Norm Box过度交配。此外,我们使用嵌入式网络来设计一种迭代算法,用于计算原始系统紧密包含函数的上限。第三,我们使用Lipschitz常数的上限和紧密包含函数的上限来设计两种算法,以训练和稳健性验证隐式神经网络。最后,我们应用算法在MNIST数据集上训练隐式神经网络,并将模型的鲁棒性与通过文献中现有方法训练的模型进行比较。
translated by 谷歌翻译
单眼3D人姿势估计技术有可能大大增加人类运动数据的可用性。单位图2D-3D提升使用图卷积网络(GCN)的表现最佳模型,通常需要一些手动输入来定义不同的身体关节之间的关系。我们提出了一种基于变压器的新型方法,该方法使用更广泛的自我发场机制来学习代表关节的代币序列。我们发现,使用中间监督以及堆叠编码器福利性能之间的剩余连接。我们还建议,将错误预测作为多任务学习框架的一部分,可以通过允许网络弥补其置信度来改善性能。我们进行广泛的消融研究,以表明我们的每项贡献都会提高性能。此外,我们表明我们的方法的表现超过了最新的单帧3D人类姿势估计的最新技术状态。我们的代码和训练有素的模型可在GitHub上公开提供。
translated by 谷歌翻译
从演示中学习(LFD)是一种从人提供的演示中复制和概括机器人技能的流行方法。在本文中,我们提出了一种基于优化的新型LFD方法,该方法将演示描述为弹性图。弹性图是通过弹簧网格连接的节点的图。我们通过将弹性地图拟合到一组演示中来构建技能模型。我们方法中的公式优化问题包括三个具有自然和物理解释的目标。主术语奖励笛卡尔坐标中的平方误差。第二项惩罚了导致最佳轨迹总长度的点的非等应存在分布。第三学期奖励平滑度,同时惩罚非线性。这些二次目标形成了凸问题,可以通过局部优化器有效地解决。我们研究了九种用于构建和加权弹性图并研究其在机器人任务中的性能的方法。我们还使用UR5E操纵器组在几个模拟和现实世界中评估了所提出的方法,并将其与其他LFD方法进行比较,以证明其在各种指标中的好处和灵活性。
translated by 谷歌翻译
在本文中,我们提出了一种通过基于球形网格的预处理步骤来减轻激光扫描匹配中阴影错误的方法。由于网格与LiDAR束对齐,因此消除阴影边缘相对容易,从而导致LiDAR扫描匹配的系统错误。正如我们通过仿真所示,我们提出的算法比地面平面去除算法是最常见的减轻阴影策略。与拆除地面平面不同,我们的方法适用于任意地形(例如,城市墙壁上的阴影,丘陵地形的阴影),同时将钥匙雷达点保留在地面上,这对于估计高度,音高和滚动的变化至关重要。我们的预处理算法可以与一系列扫描匹配方法一起使用。但是,对于基于体素的扫描匹配方法,它通过降低计算成本和在体素之间更均匀分配激光点来提供额外的好处。
translated by 谷歌翻译
倾斜的随机生存森林(RSF)是一种用于右翼结果的合奏监督学习方法。斜RSF中的树是使用预测变量的线性组合生长的,以创建分支,而在标准RSF中,使用单个预测变量。倾斜的RSF集合通常比标准RSF合奏具有更高的预测准确性。但是,评估预测变量的所有可能的线性组合会诱导大量的计算开销,从而将应用限制为大规模数据集。此外,几乎没有开发用于解释斜RSF合奏的方法,与基于轴的对应物相比,它们仍然难以解释。我们介绍了一种提高斜力RSF计算效率的方法,以及一种用斜RSF估计单个预测变量重要性的方法。我们减少计算开销的策略是利用牛顿 - 拉夫森评分(Newton-Raphson)评分,这是一种经典的优化技术,我们适用于决策树的每个非叶子节点内的COX部分似然函数。我们通过在线性组合中否定了用于给定预测指标的每个系数,然后计算出降低的降低准确性,从而估计单个预测因子对斜RSF的重要性。通常,在基准测试实验中,我们发现,与现有的斜RSF相比,与现有软件相比,我们对斜RSF的实现速度约为450倍,而较高的Brier得分则要高450倍。我们在模拟研究中发现,“否定重要性”比置换重要性,莎普利添加性解释和先前引入的技术更可靠地区分相关和无关的预测因子,以基于方差分析来衡量斜RSF的可变重要性。当前研究中引入的方法可在AORSF R软件包中获得。
translated by 谷歌翻译