在硅组织模型中,可以评估磁共振成像的定量模型。这包括对成像生物标志物和组织微结构参数的验证和灵敏度分析。我们提出了一种新的方法来生成心肌微结构的现实数值幻影。我们扩展了以前的研究,该研究考虑了心肌细胞的变异性,心肌细胞(插入式椎间盘)之间的水交换,心肌微结构混乱和四个钣金方向。在该方法的第一阶段,心肌细胞和钣金是通过考虑心肌到骨膜细胞连接的形状变异性和插入式椎间盘而产生的。然后,将薄板汇总和定向在感兴趣的方向上。我们的形态计量学研究表明,数值和真实(文献)心肌细胞数据的体积,长度以及一级和次要轴的分布之间没有显着差异($ p> 0.01 $)。结构相关性分析证实了硅内组织与实际组织的混乱类别相同。此外,心肌细胞的模拟螺旋角(HA)和输入HA(参考值)之间的绝对角度差($ 4.3^\ Circ \ PM 3.1^\ Circ $)与所测量HA之间的绝对角差有很好的一致性使用实验性心脏扩散张量成像(CDTI)和组织学(参考值)(Holmes等,2000)($ 3.7^\ Circ \ PM6.4^\ Circ $)和(Scollan等,1998)($ 4.9) ^\ circ \ pm 14.6^\ circ $)。使用结构张量成像(黄金标准)和实验性CDTI,输入和模拟CDTI的特征向量和模拟CDTI的角度之间的角度距离小于测量角度之间的角度距离。这些结果证实,所提出的方法比以前的研究可以为心肌产生更丰富的数值幻象。
translated by 谷歌翻译
Jitendra Malik once said, "Supervision is the opium of the AI researcher". Most deep learning techniques heavily rely on extreme amounts of human labels to work effectively. In today's world, the rate of data creation greatly surpasses the rate of data annotation. Full reliance on human annotations is just a temporary means to solve current closed problems in AI. In reality, only a tiny fraction of data is annotated. Annotation Efficient Learning (AEL) is a study of algorithms to train models effectively with fewer annotations. To thrive in AEL environments, we need deep learning techniques that rely less on manual annotations (e.g., image, bounding-box, and per-pixel labels), but learn useful information from unlabeled data. In this thesis, we explore five different techniques for handling AEL.
translated by 谷歌翻译
Modern speech enhancement (SE) networks typically implement noise suppression through time-frequency masking, latent representation masking, or discriminative signal prediction. In contrast, some recent works explore SE via generative speech synthesis, where the system's output is synthesized by a neural vocoder after an inherently lossy feature-denoising step. In this paper, we propose a denoising vocoder (DeVo) approach, where a vocoder accepts noisy representations and learns to directly synthesize clean speech. We leverage rich representations from self-supervised learning (SSL) speech models to discover relevant features. We conduct a candidate search across 15 potential SSL front-ends and subsequently train our vocoder adversarially with the best SSL configuration. Additionally, we demonstrate a causal version capable of running on streaming audio with 10ms latency and minimal performance degradation. Finally, we conduct both objective evaluations and subjective listening studies to show our system improves objective metrics and outperforms an existing state-of-the-art SE model subjectively.
translated by 谷歌翻译
由于管理部分微分方程的半差异,例如通过有限元方法。这些系统的复杂性提出了直接应用自动控制的计算挑战。虽然模型还原已在控制中看到无处不在的应用,但在这种情况下使用非线性模型还原方法仍然很困难。问题在于在降低的订单模型中保留非线性动力学的结构,以进行高保真控制。在这项工作中,我们利用光谱亚曼佛(SSM)理论的最新进展来使模型在明确的假设下降低,以有效地合成反馈控制器。
translated by 谷歌翻译
由于其固有的非线性和高度的自由度,对连续体软机器人的建模和控制仍然是一项艰巨的任务。这些复杂性阻碍了适合实时控制的高保真模型的构建。尽管已经提出了各种模型和基于学习的方法来应对这些挑战,但它们缺乏普遍性,很少保留动态的结构。在这项工作中,我们提出了一种新的,数据驱动的方法,用于从数据中提取面向控制的模型。我们克服了上面概述的问题,并证明了我们对光谱次级减少(SSMR)的卓越性能 - \'a-vis the Art的状态。
translated by 谷歌翻译
台湾对全球碎片流的敏感性和死亡人数最高。台湾现有的碎屑流警告系统,该系统使用降雨量的时间加权度量,当该措施超过预定义的阈值时,会导致警报。但是,该系统会产生许多错误的警报,并错过了实际碎屑流的很大一部分。为了改善该系统,我们实施了五个机器学习模型,以输入历史降雨数据并预测是否会在选定的时间内发生碎屑流。我们发现,随机的森林模型在五个模型中表现最好,并优于台湾现有系统。此外,我们确定了与碎屑流的发生密切相关的降雨轨迹,并探索了缺失碎屑流的风险与频繁的虚假警报之间的权衡。这些结果表明,仅在小时降雨数据中训练的机器学习模型的潜力可以挽救生命,同时减少虚假警报。
translated by 谷歌翻译
减少甲烷排放对于缓解全球变暖至关重要。为了将甲烷排放归因于其来源,有必要综合的甲烷源基础设施数据集。深入学习远程感知的图像的最新进展有可能识别甲烷源的位置和特征,但是缺乏公开可用的数据,可以使机器学习研究人员和从业人员能够构建自动映射方法。为了帮助填补这一空白,我们在美国构建了一个称为Meter-ML的多传感器数据集,该数据集包含86,625个地理参考的NAIP,Sentinel-1和Sentinel-2图像,并在美国标记为有甲烷源设施,包括甲烷源设施,包括集中动物喂养操作,,,,,,,包括浓缩动物喂养操作,煤矿,垃圾填埋场,天然气加工厂,炼油厂和石油末端以及废水处理厂。我们尝试各种模型,以利用不同的空间分辨率,空间足迹,图像产品和光谱带。我们发现,我们的最佳模型在确定浓缩动物喂养操作的精确召回曲线下达到了一个面积,在专家标签的测试集上,用于识别浓缩动物饲养操作,用于油炼油厂和石油末端0.821,这表明有可能进行大规模映射。我们在https://stanfordmlgroup.github.io/projects/meter-ml/上免费提供仪表-ML,以支持自动化甲烷源映射的未来工作。
translated by 谷歌翻译
基于得分的生成模型在密度估计和生成建模任务上表现出最新的性能。这些模型通常假设数据几何形状是平坦的,但已开发出最近的扩展来合成生活在Riemannian歧管上的数据。现有的加速扩散模型采样方法通常不适用于Riemannian设置,基于Riemannian得分的方法尚未适应数据集插值的重要任务。为了克服这些问题,我们介绍了\ emph {riemannian扩散schr \“ odinger桥}。我们提出的方法概括了扩散的schr \“ \ cite {debortoli2021neurips}中引入的odinger桥,向非欧国性分数设置超出了Riemannian Score的模型,并扩展第一次逆转。我们验证我们提出的关于合成数据以及真实地球和气候数据的方法。
translated by 谷歌翻译
观察到在训练期间重新定位神经网络,以改善最近的作品中的概括。然而,它既不在深度学习实践中被广泛采用,也不经常用于最先进的培训方案中。这就提出了一个问题,即何时重新定位起作用,以及是否应与正规化技术一起使用,例如数据增强,体重衰减和学习率计划。在这项工作中,我们对标准培训的经验比较进行了广泛的经验比较,并选择了一些重新定位方法来回答这个问题,并在各种图像分类基准上培训了15,000多个模型。我们首先确定在没有任何其他正则化的情况下,这种方法对概括始终有益。但是,当与其他经过精心调整的正则化技术一起部署时,重新定位方法几乎没有给予概括,尽管最佳的概括性能对学习率和体重衰减超参数的选择不太敏感。为了研究重新定位方法对嘈杂数据的影响,我们还考虑在标签噪声下学习。令人惊讶的是,在这种情况下,即使在存在其他经过精心调整的正则化技术的情况下,重新定位也会显着改善标准培训。
translated by 谷歌翻译
离线强化学习在利用大型预采用的数据集进行政策学习方面表现出了巨大的希望,使代理商可以放弃经常廉价的在线数据收集。但是,迄今为止,离线强化学习的探索相对较小,并且缺乏对剩余挑战所在的何处的了解。在本文中,我们试图建立简单的基线以在视觉域中连续控制。我们表明,对两个基于最先进的在线增强学习算法,Dreamerv2和DRQ-V2进行了简单的修改,足以超越事先工作并建立竞争性的基准。我们在现有的离线数据集中对这些算法进行了严格的评估,以及从视觉观察结果中进行离线强化学习的新测试台,更好地代表现实世界中离线增强学习问题中存在的数据分布,并开放我们的代码和数据以促进此方面的进度重要领域。最后,我们介绍并分析了来自视觉观察的离线RL所独有的几个关键Desiderata,包括视觉分散注意力和动态视觉上可识别的变化。
translated by 谷歌翻译