在本文中,我们开发Faceqgen,基于生成的对抗网络的面部图像的No参考质量评估方法,其产生与面部识别精度相关的标量质量测量。 Faceqgen不需要标记为培训的质量措施。它从使用SCFace数据库从头开始培训。 Faceqgen将图像恢复应用于未知质量的面部图像,将其转换为规范的高质量图像,即正面姿势,均匀的背景等。质量估计是原始图像和恢复图像之间的相似性,因为低质量图像由于恢复而体验更大的变化。我们比较三种不同的数值质量措施:a)原始和恢复的图像之间的MSE,b)他们的SSIM和c)甘杆菌鉴别器的输出得分。结果表明,面部QGEN的质量措施是面部识别准确性的良好估计。我们的实验包括与针对面部和一般图像设计的其他质量评估方法的比较,以便在现有技术中定位面部。这种比较表明,即使面对面识别准确性预测方面不超过最佳现有的面部质量评估方法,它也实现了足够的结果,以证明质量估计的半监督学习方法的潜力(特别是数据 - 基于每个受试者的单一高质量图像的驱动学习),具有提高未来性能的能力,通过对模型的充分改进以及竞争方法的显着优势,不需要质量标签的发展。这使得Faceqgen灵活且可扩展,而无需昂贵的数据策激。
translated by 谷歌翻译