在本文中,我们开发Faceqgen,基于生成的对抗网络的面部图像的No参考质量评估方法,其产生与面部识别精度相关的标量质量测量。 Faceqgen不需要标记为培训的质量措施。它从使用SCFace数据库从头开始培训。 Faceqgen将图像恢复应用于未知质量的面部图像,将其转换为规范的高质量图像,即正面姿势,均匀的背景等。质量估计是原始图像和恢复图像之间的相似性,因为低质量图像由于恢复而体验更大的变化。我们比较三种不同的数值质量措施:a)原始和恢复的图像之间的MSE,b)他们的SSIM和c)甘杆菌鉴别器的输出得分。结果表明,面部QGEN的质量措施是面部识别准确性的良好估计。我们的实验包括与针对面部和一般图像设计的其他质量评估方法的比较,以便在现有技术中定位面部。这种比较表明,即使面对面识别准确性预测方面不超过最佳现有的面部质量评估方法,它也实现了足够的结果,以证明质量估计的半监督学习方法的潜力(特别是数据 - 基于每个受试者的单一高质量图像的驱动学习),具有提高未来性能的能力,通过对模型的充分改进以及竞争方法的显着优势,不需要质量标签的发展。这使得Faceqgen灵活且可扩展,而无需昂贵的数据策激。
translated by 谷歌翻译
可取消的生物识别性是指一组技术,其中生物识别输入在处理或存储前用键有意地转换。该转换是可重复的,可以实现后续生物特征比较。本文介绍了一种可消除生物识别性的新方案,旨在保护模板免受潜在攻击,适用于任何基于生物识别的识别系统。我们所提出的方案基于从变形随机生物识别信息获得的时变键。给出了面部生物识别技术的实验实施。结果证实,该方法能够在提高识别性能的同时抵抗泄漏攻击。
translated by 谷歌翻译
本文是第一个探索自动检测深度卷积神经网络中的自动化方法,只需查看其权重。此外,它也是了解神经网络以及它们的工作方式。我们表明,确实可以知道模型是否偏离或不仅仅是通过查看其权重,而没有特定输入的模型推断。我们分析了使用彩色MNIST数据库的玩具示例在深网络的权重中编码偏差,并且我们还提供了使用最先进的方法和实验资源从面部图像进行性别检测的现实案例研究。为此,我们生成了两个具有36k和48K偏置模型的数据库。在MNIST模型中,我们能够检测它们是否具有超过99%的精度呈现强大或低偏差,我们还能够在四个级别的偏差之间进行分类,精度超过70%。对于面部模型,我们在区分偏向亚洲,黑人或高加索人的型号的模型方面取得了90%的准确性。
translated by 谷歌翻译
可激发的光电设备代表了在神经形态(脑启发)光子系统中实施人工尖峰神经元的关键构件之一。这项工作介绍并实验研究了用谐振隧穿二极管(RTD)构建的光电 - 光学(O/E/O)人工神经元,该神经元(RTD)耦合到光电探测器作为接收器和垂直腔表面发射激光器作为发射机。我们证明了一个明确定义的兴奋性阈值,在此上面,该神经元在该神经元中产生100 ns的光学尖峰反应,具有特征性的神经样耐受性。我们利用其粉丝功能来执行设备中的重合检测(逻辑和)以及独家逻辑或(XOR)任务。这些结果提供了基于RTD的Spiking光电神经元的确定性触发和任务的首次实验验证,并具有输入和输出光学(I/O)终端。此外,我们还从理论上研究了拟议系统的纳米光子实施的前景,并结合了纳米级RTD元素和纳米剂的整体设计。因此,在未来的神经形态光子硬件中,证明了基于RTD的综合兴奋节点对低足迹,高速光电尖峰神经元的潜力。
translated by 谷歌翻译
以富有成效和有效的方式处理和分析表格数据对于在医疗保健等领域的成功应用程序中的成功应用至关重要。但是,缺乏代表和标准化表格信息的统一框架对研究人员和专业人员都构成了重大挑战。在这项工作中,我们介绍了TabText,一种利用语言的非结构化数据格式的方法论,可以有效,准确地从不同的表结构和时间段编码表格数据。我们使用两个医疗保健数据集和四个预测任务,这些任务通过TabText提取的特征优于传统处理方法提取的那些提取的任务,而这些任务的功能却高于2-5%。此外,我们分析了框架对缺失价值观,元信息和语言描述性句子表示的不同选择的敏感性,并为赢得改善绩效的策略提供了见解。
translated by 谷歌翻译
自动驾驶汽车的主要挑战是在看不见的动态环境中导航。将移动对象与静态对象分开对于导航,姿势估计以及了解其他交通参与者在不久的将来可能如何移动至关重要。在这项工作中,我们解决了区分当前移动物体(如行人行人或驾驶汽车)的3D激光雷达点的问题,从非移动物体(如墙壁)中获得的点,但还停放了汽车。我们的方法采用了一系列观察到的激光扫描,并将它们变成素化的稀疏4D点云。我们应用计算有效的稀疏4D旋转来共同提取空间和时间特征,并预测序列中所有点的移动对象置信得分。我们制定了一种退化的地平线策略,使我们能够在线预测移动对象,并根据新观察结果对GO进行预测。我们使用二进制贝叶斯过滤器递归整合了扫描的新预测,从而产生了更强的估计。我们在Semantickitti移动对象细分挑战中评估我们的方法,并显示出比现有方法更准确的预测。由于我们的方法仅在随着时间的推移随时间范围的几何信息上运行,因此它可以很好地概括为新的,看不见的环境,我们在阿波罗数据集中评估了这些环境。
translated by 谷歌翻译
卷积和复发性神经网络的结合是一个有希望的框架,它允许提取高质量时空特征以及其时间依赖性,这是时间序列预测问题(例如预测,分类或异常检测)的关键。在本文中,引入了TSFEDL库。它通过使用卷积和经常性的深神经网络来编译20种时间序列提取和预测的最先进方法,用于在多个数据挖掘任务中使用。该库是建立在AGPLV3许可下的一组TensorFlow+Keras和Pytorch模块上的。本提案中包含的架构的性能验证证实了此Python软件包的有用性。
translated by 谷歌翻译
了解场景是自主导航车辆的关键,以及在线将周围环境分段为移动和非移动物体的能力是这项任务的中央成分。通常,基于深度学习的方法用于执行移动对象分段(MOS)。然而,这些网络的性能强烈取决于标记培训数据的多样性和数量,可以获得昂贵的信息。在本文中,我们提出了一种自动数据标记管道,用于3D LIDAR数据,以节省广泛的手动标记工作,并通过自动生成标记的训练数据来提高现有的基于学习的MOS系统的性能。我们所提出的方法通过批量处理数据来实现数据。首先利用基于占用的动态对象拆除以粗略地检测可能的动态物体。其次,它提取了提案中的段,并使用卡尔曼滤波器跟踪它们。基于跟踪的轨迹,它标记了实际移动的物体,如驾驶汽车和行人。相反,非移动物体,例如,停放的汽车,灯,道路或建筑物被标记为静态。我们表明,这种方法允许我们高效地标记LIDAR数据,并将我们的结果与其他标签生成方法的结果进行比较。我们还使用自动生成的标签培训深度神经网络,并与在同一数据上的手动标签上接受过的手动标签的培训相比,实现了类似的性能,以及使用我们方法生成的标签的其他数据集时更好的性能。此外,我们使用不同的传感器评估我们在多个数据集上的方法,我们的实验表明我们的方法可以在各种环境中生成标签。
translated by 谷歌翻译
精确的温度测量对于适当的监测和控制工业炉是必不可少的。然而,测量不确定性是这种关键参数的风险。当使用谱带辐射热度技术时,必须考虑某些乐器和环境误差,例如目标表面发射率的不确定性,反射周围物体的辐射或大气吸收和发射,以命名几个。可以使用测量模型来分离测量辐射的不期望的贡献,也称为纠错模型。本文介绍了石油化学炉场景中的温度测量期间预算重要误差和不确定性的方法。还通过基于深度学习的测量校正模型来介绍连续监控系统,以允许域专家实时分析炉的操作。为了验证所提出的系统的功能,提出了一种在石化工厂中的真实应用案例。所提出的解决方案展示了精确的工业炉监测的可行性,从而增加了运行安全性并提高了这种能量密集型系统的效率。
translated by 谷歌翻译
以任务为导向的对话系统(TODS)继续升高,因为各种行业发现有效地利用其能力,节省时间和金钱。然而,即使是最先进的TOD尚未达到其全部潜力。TOD通常具有主要设计专注于完成手头的任务,因此任务分辨率的度量应优先考虑。可能会忽略可能指向对话的其他可能指向成功或其他方面的会话质量属性。这可能导致人类和对话系统之间的相互作用,让用户不满意或沮丧。本文探讨了对话系统的评价框架的文献,以及对话系统中的会话质量属性的作用,看起来,如何以及在与对话系统的性能相关的情况下,如何相关。
translated by 谷歌翻译