已经进行了一项详尽的研究,以研究基于跨度的联合实体和关系提取任务的模型。但是,这些模型在模型训练过程中采样了大量的负实体和负关系,这是必不可少的,但导致数据分布严重不平衡,进而导致次优模型性能。为了解决上述问题,我们为基于跨度的联合实体和关系提取提出了两个阶段范式,其中涉及在第一阶段对实体和关系进行分类,并预测第二阶段的这些实体和关系的类型阶段。两阶段范式使我们的模型能够显着缩小数据分布差距,包括负实体与其他实体之间的差距,以及负面关系与其他关系之间的差距。此外,我们首次尝试将实体类型和实体距离与全球特征相结合,这已被证明有效,尤其是对于关系提取而言。几个数据集的实验结果表明,基于两阶段范式的基于跨度的联合提取模型增强,全局功能始终优于先前用于联合提取任务的基于最新的跨度模型,并建立了新的标准基准。定性和定量分析进一步验证了提出的范式和全球特征的有效性。
translated by 谷歌翻译
文本对抗攻击暴露了文本分类器的漏洞,可用于改善其稳健性。现有的上下文感知方法仅考虑黄金标签的概率,并在搜索攻击路径时使用贪婪的搜索,通常会限制攻击效率。为了解决这些问题,我们提出了PDB,这是一种使用概率差的引导光束搜索的上下文感知的文本对抗攻击模型。概率差异是所有类标签概率的总体考虑,PDB使用它来指导攻击路径的选择。此外,PDBS使用Beam搜索找到成功的攻击路径,从而避免搜索空间有限。广泛的实验和人类评估表明,PDB在一系列评估指标中的表现优于以前的最佳模型,尤其是提高 +19.5%的攻击成功率。消融研究和定性分析进一步证实了PDB的效率。
translated by 谷歌翻译
几个名称的实体识别(NER)使我们能够使用很少的标记示例为新域构建一个NER系统。但是,该任务的现有原型网络具有大致估计的标签依赖性和紧密分布的原型,因此经常导致错误分类。为了解决上述问题,我们提出了EP-NET,这是一个实体级原型网络,通过分散分布的原型增强。EP-NET构建实体级原型,并认为文本跨度为候选实体,因此它不再需要标签依赖性。此外,EP-NET从头开始训练原型,以分散分配它们,并使用空间投影将跨度与嵌入空间中的原型对齐。两项评估任务和少量网络设置的实验结果表明,EP-NET在整体性能方面始终优于先前的强大模型。广泛的分析进一步验证了EP-NET的有效性。
translated by 谷歌翻译
文档检索使用户能够准确,快速找到所需的文档。为了满足检索效率的要求,普遍的深神经方法采用了基于表示的匹配范式,该范式通过离线预先存储文档表示节省了在线匹配时间。但是,上述范式会消耗庞大的本地存储空间,尤其是将文档存储为单词元素表示时。为了解决这个问题,我们提出了TGTR,这是一种基于主题的文本表示模型,用于文档检索。遵循基于表示的匹配范式,TGTR将文档表示脱机存储以确保检索效率,而通过使用新颖的主题格式表示,而不是传统的单词元素,则大大降低了存储要求。实验结果表明,与单词粒度的基线相比,TGTR在检索准确性方面始终在TREC CAR和MS MARCO上竞争,但其所需的存储空间的少于1/10。此外,TGTR绝大多数在检索准确性方面超过了全球粒度的基线。
translated by 谷歌翻译
对于指定的实体识别(NER),基于序列标签和基于跨度的范例大不相同。先前的研究表明,这两个范式具有明显的互补优势,但是据我们所知,很少有模型试图在单个NER模型中利用这些优势。在我们以前的工作中,我们提出了一种称为捆绑学习(BL)的范式来解决上述问题。 BL范式将两个NER范式捆绑在一起,从而使NER模型通过加权总结每个范式的训练损失来共同调整其参数。但是,三个关键问题仍未解决:BL何时起作用? BL为什么工作? BL可以增强现有的最新(SOTA)NER模型吗?为了解决前两个问题,我们实施了三个NER模型,涉及一个基于序列标签的模型-Seqner,Seqner,一个基于跨度的NER模型 - 机器人,以及将Seqner和Spanner捆绑在一起的BL-NER。我们根据来自五个域的11个NER数据集的实验结果得出两个关于这两个问题的结论。然后,我们将BL应用于现有的五个SOTA NER模型,以研究第三期,包括三个基于序列标签的模型和两个基于SPAN的模型。实验结果表明,BL始终提高其性能,表明可以通过将BL纳入当前的SOTA系统来构建新的SOTA NER系统。此外,我们发现BL降低了实体边界和类型预测错误。此外,我们比较了两种常用的标签标签方法以及三种类型的跨度语义表示。
translated by 谷歌翻译
基于深度学习的路面裂缝检测方法通常需要大规模标签,具有详细的裂缝位置信息来学习准确的预测。然而,在实践中,由于路面裂缝的各种视觉模式,裂缝位置很难被手动注释。在本文中,我们提出了一种基于深域适应的裂缝检测网络(DDACDN),其学会利用源域知识来预测目标域中的多类别裂缝位置信息,其中仅是图像级标签可用的。具体地,DDACDN首先通过双分支权重共享骨干网络从源和目标域中提取裂缝特征。并且在实现跨域自适应的努力中,通过从每个域的特征空间聚合三尺度特征来构建中间域,以使来自源域的裂缝特征适应目标域。最后,该网络涉及两个域的知识,并接受识别和本地化路面裂缝的培训。为了便于准确的培训和验证域适应,我们使用两个具有挑战性的路面裂缝数据集CQu-BPDD和RDD2020。此外,我们构建了一个名为CQu-BPMDD的新型大型沥青路面多标签疾病数据集,其中包含38994个高分辨率路面疾病图像,以进一步评估模型的稳健性。广泛的实验表明,DDACDN优于最先进的路面裂纹检测方法,以预测目标结构域的裂缝位置。
translated by 谷歌翻译
基于跨度的关节提取同时进行文本跨度的指定实体识别(NER)和关系提取(RE)。最近的研究表明,令牌标签可以传达至关重要的任务特定信息并丰富令牌语义。但是,据我们所知,由于完全戒除序列标记机制,所有先前基于跨度的工作都无法使用令牌标签的形式。为了解决此问题,我们置于基于跨度的跨度网络(STSN)的序列序列标记,这是一个基于跨度的关节外推网络,该网络通过基于序列标记的NER得出的令牌生物标签信息增强。通过深入堆叠多个Atten-tion层,我们设计了一个深度的Neu-ral架构来构建STSN,每个阶层层都由三个基本注意力单元组成。深度神经体系结构首先学习了代币标签和基于SPAN的关节提取的Seman-TIC表示,然后在它们之间构建了形式的相互作用,这也实现了基于SPAN的NER和RE之间的双向信息相互关系。向热 - 我们扩展了生物标记方案,以使STSN可以提取重叠的联系。三个基准数据集的实验表明,我们的模型始终优于先前的最佳模型,从而创造了新的最新结果。
translated by 谷歌翻译
最近,已经开发了许多算法来解决光场超分辨率(LFSR)的问题,即超声分辨率的低分辨率光场,以获得高分辨率视图。尽管提供了令人鼓舞的结果,但这些方法都是基于卷积的,并且在副孔径图像的全局关系模型中自然弱,这必然是表征光场的固有结构。在本文中,我们通过将LFSR视为序列到序列重建任务,提出了一种基于变压器的新型制剂。特别地,我们的模型将每个垂直或水平角度视图的子孔图像视为序列,并通过空间角局部增强的自我关注层在每个序列内建立远程几何依赖性,其维护每个的局部性子光圈图像也是如此。此外,为了更好地恢复图像细节,我们通过利用光场的梯度图来引导序列学习来提出细节保存的变压器(称为DPT)。 DPT由两个分支组成,每个分支机构与变压器相关联,用于从原始或梯度图像序列学习。这两个分支机构最终融合以获得重建的综合特征表示。评估在许多光场数据集中进行,包括现实世界场景和合成数据。该方法与其他最先进的方案相比,实现了卓越的性能。我们的代码可公开提供:https://github.com/bitszwang/dpt。
translated by 谷歌翻译
过去,用于数字化文件的计算机视觉系统可以依赖于系统捕获的高质量扫描。今天,涉及数字文件的交易更有可能从非专业人士拍摄的手机照片上传。因此,文档自动化的计算机愿景现在必须考虑自然场景上下文中捕获的文档。额外的挑战是,文档处理的任务目标可以是高度用例特定的,这使得公共数据集在其实用程序中有限,而手动数据标签也昂贵并且在使用情况之间翻译不当。要解决这些问题,我们创建了SIM2REAL文档 - 一个合成数据集的框架,并在自然场景中执行文档的域随机化。 SIM2REAL文档使使用BLENDER,一个用于3D建模和光线跟踪渲染的开源工具的文档的程序化3D渲染。通过使用渲染来模拟光,几何,相机和背景的物理交互,我们在自然场景上下文中综合文档数据集。每个渲染都与使用案例特定的地面真理数据配对,指定感兴趣的潜在特征,产生无限制的拟合培训数据。然后,机器学习模型的作用是为了解决渲染管道构成的逆问题。通过微调或调整域随机化参数,可以进一步迭代这种模型。
translated by 谷歌翻译
三维荧光显微镜通常遭受各向异性的影响,沿轴向方向的分辨率低于侧面成像平面内的分辨率。我们通过提出双周期来解决此问题,这是双环荧光图像的关节反卷积和融合的新框架。受到最近的神经清性方法的启发,双周期被设计为一种循环一致的生成网络,通过结合双视发电机和先前引导的退化模型,以自我监督的方式训练。我们在合成数据和真实数据上验证双周期,显示其最先进的性能,而无需任何外部培训数据。
translated by 谷歌翻译