We study the problem of estimating latent population flows from aggregated count data. This problem arises when individual trajectories are not available due to privacy issues or measurement fidelity. Instead, the aggregated observations are measured over discrete-time points, for estimating the population flows among states. Most related studies tackle the problems by learning the transition parameters of a time-homogeneous Markov process. Nonetheless, most real-world population flows can be influenced by various uncertainties such as traffic jam and weather conditions. Thus, in many cases, a time-homogeneous Markov model is a poor approximation of the much more complex population flows. To circumvent this difficulty, we resort to a multi-marginal optimal transport (MOT) formulation that can naturally represent aggregated observations with constrained marginals, and encode time-dependent transition matrices by the cost functions. In particular, we propose to estimate the transition flows from aggregated data by learning the cost functions of the MOT framework, which enables us to capture time-varying dynamic patterns. The experiments demonstrate the improved accuracy of the proposed algorithms than the related methods in estimating several real-world transition flows.
translated by 谷歌翻译
点过程模型在现实世界应用中非常重要。在某些关键应用程序中,对点过程模型的估计涉及来自用户的大量敏感个人数据。隐私问题自然出现了现有文献中未解决的问题。为了弥合这一明显的差距,我们提出了第一个针对点过程模型的第一个一般差异私人估计程序。具体来说,我们以霍克斯的流程为例,并根据霍克斯流程的离散表示,为事件流数据引入了严格的差异隐私定义。然后,我们提出了两种差异性优化算法,可以有效地估算霍克斯流程模型,并在两个不同的设置下具有所需的隐私和公用事业保证。提供实验以支持我们的理论分析。
translated by 谷歌翻译
不平衡的数据对基于深度学习的分类模型构成挑战。解决不平衡数据的最广泛使用的方法之一是重新加权,其中训练样本与损失功能的不同权重相关。大多数现有的重新加权方法都将示例权重视为可学习的参数,并优化了元集中的权重,因此需要昂贵的双重优化。在本文中,我们从分布的角度提出了一种基于最佳运输(OT)的新型重新加权方法。具体而言,我们将训练集视为其样品上的不平衡分布,该分布由OT运输到从元集中获得的平衡分布。训练样品的权重是分布不平衡的概率质量,并通过最大程度地减少两个分布之间的ot距离来学习。与现有方法相比,我们提出的一种方法可以脱离每次迭代时的体重学习对相关分类器的依赖性。图像,文本和点云数据集的实验表明,我们提出的重新加权方法具有出色的性能,在许多情况下实现了最新的结果,并提供了一种有希望的工具来解决不平衡的分类问题。
translated by 谷歌翻译
图形结构化数据通常在自然界中具有动态字符,例如,在许多现实世界中,链接和节点的添加。近年来见证了对这种图形数据进行建模的动态图神经网络所支付的越来越多的注意力,几乎所有现有方法都假设,当建立新的链接时,应通过学习时间动态来传播邻居节点的嵌入。新的信息。但是,这种方法遭受了这样的限制,如果新连接引入的节点包含嘈杂的信息,那么将其知识传播到其他节点是不可靠的,甚至导致模型崩溃。在本文中,我们提出了Adanet:通过增强动态图神经网络的强化知识适应框架。与以前的方法相反,一旦添加了新链接,就立即更新邻居节点的嵌入方式,Adanet试图自适应地确定由于涉及的新链接而应更新哪些节点。考虑到是否更新一个邻居节点的嵌入的决定将对其他邻居节点产生很大的影响,因此,我们将节点更新的选择作为序列决策问题,并通过强化学习解决此问题。通过这种方式,我们可以将知识自适应地传播到其他节点,以学习健壮的节点嵌入表示。据我们所知,我们的方法构成了通过强化学习的动态图神经网络来探索强大知识适应的首次尝试。在三个基准数据集上进行的广泛实验表明,Adanet可以实现最新的性能。此外,我们通过在数据集中添加不同程度的噪声来执行实验,并定量和定性地说明ADANET的鲁棒性。
translated by 谷歌翻译
后门学习是研究深神经网络(DNNS)脆弱性的一个新兴而重要的话题。在快速武器竞赛的地位上,正在连续或同时提出许多开创性的后门攻击和防御方法。但是,我们发现对新方法的评估通常是不可思议的,以验证其主张和实际绩效,这主要是由于快速发展,不同的环境以及实施和可重复性的困难。没有彻底的评估和比较,很难跟踪当前的进度并设计文献的未来发展路线图。为了减轻这一困境,我们建立了一个名为Backdoorbench的后门学习的全面基准。它由一个可扩展的基于模块化的代码库(当前包括8个最先进(SOTA)攻击和9种SOTA防御算法的实现),以及完整的后门学习的标准化协议。我们还基于5个模型和4个数据集,对9个防御措施的每对8次攻击进行全面评估,总共8,000对评估。我们从不同的角度进一步介绍了对这8,000次评估的不同角度,研究了对国防算法,中毒比率,模型和数据集对后门学习的影响。 \ url {https://backdoorbench.github.io}公开获得了Backdoorbench的所有代码和评估。
translated by 谷歌翻译
Fairness has been taken as a critical metric in machine learning models, which is considered as an important component of trustworthy machine learning. In this paper, we focus on obtaining fairness for popular link prediction tasks, which are measured by dyadic fairness. A novel pre-processing methodology is proposed to establish dyadic fairness through data repairing based on optimal transport theory. With the well-established theoretical connection between the dyadic fairness for graph link prediction and a conditional distribution alignment problem, the dyadic repairing scheme can be equivalently transformed into a conditional distribution alignment problem. Furthermore, an optimal transport-based dyadic fairness algorithm called DyadicOT is obtained by efficiently solving the alignment problem, satisfying flexibility and unambiguity requirements. The proposed DyadicOT algorithm shows superior results in obtaining fairness compared to other fairness methods on two benchmark graph datasets.
translated by 谷歌翻译
介绍了一种名为VMagent的新型模拟器,以帮助RL研究人员更好地探索新方法,特别是对于虚拟机调度。VMagent由实用虚拟机(VM)调度任务的启发,并提供了一个有效的仿真平台,可以反映云计算的实际情况。从实际云计算结束了三种情况(衰落,恢复和扩展),对应于许多强化学习挑战(高维度和行动空间,高于寿命和终身需求)。VMagent为RL研究人员提供了灵活的配置,以设计考虑不同的问题特征的定制调度环境。从VM调度角度来看,VMagent还有助于探索更好的基于学习的调度解决方案。
translated by 谷歌翻译
当使用有限的阶梯尺寸\ citep {shi20211undanding}时,Nesterov的加速梯度(NAG)进行优化的性能比其连续的时间限制(无噪声动力学Langevin)更好。这项工作探讨了该现象的采样对应物,并提出了一个扩散过程,其离散化可以产生基于梯度的MCMC方法。更确切地说,我们将NAG的优化器重新制定为强烈凸功能(NAG-SC)作为无Hessian的高分辨率ODE,将其高分辨率系数更改为超参数,注入适当的噪声,并将其离散化。新的超参数的加速效应是量化的,它不是由时间响应创造的人造效应。取而代之的是,在连续动力学级别和离散算法级别上,在$ w_2 $距离中以$ W_2 $距离的加速度均已定量确定。在对数符号和多模式案例中的经验实验也证明了这一加速度。
translated by 谷歌翻译
生成的对抗网络(GAN)在无监督学习方面取得了巨大的成功。尽管具有显着的经验表现,但关于gan的统计特性的理论研究有限。本文提供了gan的近似值和统计保证,以估算具有H \“ {o} lder空间密度的数据分布。我们的主要结果表明,如果正确选择了生成器和鉴别器网络架构,则gan是一致的估计器在较强的差异指标下的数据分布(例如Wasserstein-1距离。 ,这不受环境维度的诅咒。我们对低维数据的分析基于具有Lipschitz连续性保证的神经网络的通用近似理论,这可能具有独立的兴趣。
translated by 谷歌翻译
Graph neural networks (GNNs) have received remarkable success in link prediction (GNNLP) tasks. Existing efforts first predefine the subgraph for the whole dataset and then apply GNNs to encode edge representations by leveraging the neighborhood structure induced by the fixed subgraph. The prominence of GNNLP methods significantly relies on the adhoc subgraph. Since node connectivity in real-world graphs is complex, one shared subgraph is limited for all edges. Thus, the choices of subgraphs should be personalized to different edges. However, performing personalized subgraph selection is nontrivial since the potential selection space grows exponentially to the scale of edges. Besides, the inference edges are not available during training in link prediction scenarios, so the selection process needs to be inductive. To bridge the gap, we introduce a Personalized Subgraph Selector (PS2) as a plug-and-play framework to automatically, personally, and inductively identify optimal subgraphs for different edges when performing GNNLP. PS2 is instantiated as a bi-level optimization problem that can be efficiently solved differently. Coupling GNNLP models with PS2, we suggest a brand-new angle towards GNNLP training: by first identifying the optimal subgraphs for edges; and then focusing on training the inference model by using the sampled subgraphs. Comprehensive experiments endorse the effectiveness of our proposed method across various GNNLP backbones (GCN, GraphSage, NGCF, LightGCN, and SEAL) and diverse benchmarks (Planetoid, OGB, and Recommendation datasets). Our code is publicly available at \url{https://github.com/qiaoyu-tan/PS2}
translated by 谷歌翻译