周等人提出了一个无人监督,轻质和高性能的单一对象追踪器,称为UHP-SOT。最近。作为一个扩展,我们在这项工作中介绍了一个增强版本并将其命名为UHP-SOT ++。基于基于鉴别相关滤波器的(基于DCF的)跟踪器的基础,在UHP-SOT和UHP-SOT ++中引入了两种新成分:1)背景运动建模和2)对象盒轨迹建模。 UHP-SOT和UHP-SOT ++之间的主要区别是来自三种模型的提案的融合策略(即DCF,背景运动和对象盒轨迹模型)。 UHP-SOT ++采用了一种改进的融合策略,可针对大规模跟踪数据集更加强大的跟踪性能。我们的第二件贡献在于通过在四个SOT基准数据集 - OTB2015,TC128,UAV123和LASOT上进行测试,对最先进的监督和无监督方法进行了广泛的评估。实验表明,UHP-SOT ++优于所有先前的无监督方法和几种深度学习(DL)方法,以跟踪准确性。由于UHP-SOT ++具有极小的模型大小,高跟踪性能和低计算复杂性(即使在I5 CPU上以20 fps运行,即使没有代码优化),则是资源实时对象跟踪中的理想解决方案 - 有限平台。基于实验结果,我们比较监督和无监督者的优缺点,并提供了一种新的视角,了解监督和无监督方法之间的性能差距,这是这项工作的第三次贡献。
translated by 谷歌翻译
我们提供了使用Biaffine模型的神经话语依赖性解析的研究,并与基线解析器相比实现了显着的性能改进。我们比较了Eisner算法和Chu-Liu-Edmonds算法在任务中,发现使用Chu-Liu-edmonds算法生成更深的树木并实现更好的性能。我们还评估解析器的输出的结构,具有平均最大路径长度和叶节点的平均比例,并发现解析器生成的依赖性树靠近金树。由于语料库允许非投射结构,我们分析了语料库的非投射性的复杂性,并发现该语料库中的依赖性结构最多具有最多一个和边缘度的差距程度。
translated by 谷歌翻译
主要对象通常存在于图像或视频中,因为它们是摄影师想要突出的物体。人类观众可以轻松识别它们,但算法经常将它们与其他物体混为一组。检测主要受试者是帮助机器理解图像和视频内容的重要技术。我们展示了一个新的数据集,其目标是培训模型来了解对象的布局和图像的上下文,然后找到它们之间的主要拍摄对象。这是在三个方面实现的。通过通过专业射击技能创建的电影镜头收集图像,我们收集了具有强大多样性的数据集,具体而言,它包含107 \,700图像,从21 \,540电影拍摄。我们将其标记为两个类的边界框标签:主题和非主题前景对象。我们对数据集进行了详细分析,并将任务与显着性检测和对象检测进行比较。 imagesBject是第一个尝试在摄影师想要突出显示的图像中本地化主题的数据集。此外,我们发现基于变压器的检测模型提供了其他流行模型架构中的最佳结果。最后,我们讨论了潜在的应用并以数据集的重要性讨论。
translated by 谷歌翻译
培训RGB-D突出物体检测(SOD)的深层模型通常需要大量标记的RGB-D图像。然而,不容易获取RGB-D数据,这限制了RGB-D SOD技术的发展。为了减轻这个问题,我们介绍了双半RGB-D突出物体检测网络(DS-Net),以利用未标记的RGB图像来提高RGB-D显着性检测。我们首先设计了深度去耦卷积神经网络(DDCNN),其包含深度估计分支和显着性检测分支。深度估计分支用RGB-D图像训练,然后用于估计所有未标记的RGB图像的伪深度映射以形成配对数据。显着性检测分支用于熔断RGB特征和深度特征以预测RGB-D显着性。然后,整个DDCNN被分配为师生学生框架中的骨干,用于半监督学习。此外,我们还引入了对未标记数据的中间注意力和显着性图的一致性损失,以及标记数据的监督深度和显着性损失。七种广泛使用的基准数据集上的实验结果表明,我们的DDCNN定量和定性地优于最先进的方法。我们还证明,即使在使用具有伪深度图的RGB图像时,我们的半监控DS-Net也可以进一步提高性能。
translated by 谷歌翻译
这项工作探讨了如何从具有深度加强学习方法的基于图像的观测中学习鲁棒和最广泛的状态表示。解决了在现有的Bisimulation度量工作中的计算复杂性,严格假设和表示崩溃挑战,我们设计了简单的状态表示(SIMSR)运算符,该操作员实现了等效功能,同时通过与Bisimulation度量进行比较来降低顺序的复杂性。SIMSR使我们能够设计一种基于随机逼近的方法,该方法几乎可以从观察到潜在表示空间的观察中学习映射函数(编码器)。除了理论分析外,我们在Visual Mujoco任务中尝试并与最近的最先进解决方案进行了实验。结果表明,我们的模型通常达到更好的性能,具有更好的鲁棒性和良好的概率。
translated by 谷歌翻译
与传统的刚性机器人相比,由于合规性,安全性和低成本,软机器人由于其优点而引起了越来越多的关注。作为软机器人的重要组成部分,软机器人夹具还显示出其优越的同时抓住具有不规则形状的物体。已经进行了最近的研究,以通过调整可变有效长度(VEL)来改善其抓握性能。然而,通过多室设计或可调刚度形状记忆材料实现的Vel需要复杂的气动电路设计或耗时的相变过程。这项工作提出了一种由3D印刷灯丝,忍者克朗的折叠式软机器人执行器。它是通过高速模型进行实验测试和表示的。进行数学和有限元建模,以研究所提出的软致动器的弯曲行为。此外,提出了一种拮抗约束机制来实现VEL,并且实验表明实现了更好的符合性。最后,设计了一种双模夹具,以展示Vel对抓取性能的进步。
translated by 谷歌翻译
K-Core Deconnosition是一个常用的指标来分析图形结构或研究节点在复杂图中的相对重要性。近年来,图表的规模迅速增长,特别是在工业环境中。例如,我们的工业伙伴以数十亿用户运行流行的社交应用程序,并且能够收集丰富的用户数据。因此,对大型图形的k核分解应用于学术界和行业的越来越多的关注。处理大图的简单但有效的方法是在分布式设置中训练它们,并且还提出了一些分布式k核分解算法。尽管他们有效性,我们在实验和理论上观察到这些算法消耗了太多资源,并在超大型图表上变得不稳定,特别是当给定的资源有限时。在本文中,我们处理那些超大型图形,并在分布式K核分解算法的顶部提出了分行和征服策略。我们在三个大图中评估我们的方法。实验结果表明,资源的消耗可以显着降低,大规模图的计算比现有方法更稳定。例如,分布式K-Core分解算法可以缩放到具有1360亿边缘的大图,而不会与我们的分行和征服技术丢失正确性。
translated by 谷歌翻译
城市规划指的是指定为一个地区设计土地使用配置的努力。然而,为了获得有效的城市计划,城市专家必须花费很多时间和精力,以根据领域知识和个人经验分析复杂的规划限制。为了减轻他们的沉重负担并产生一致的城市计划,我们想问一下AI可以加快城市规划过程,让人类规划者只调整所生成的特定需求的配置吗?最近的深度生成模型的进步提供了一个可能的答案,激励我们从对抗对抗的学习角度自动化城市规划。但是,出现了三个主要挑战:1)如何定量定量土地使用配置? 2)如何自动化配置规划? 3)如何评估生成配置的质量?在本文中,我们系统地解决了三个挑战。具体而言,1)我们将土地使用配置定义为经度纬度通道张量。 2)我们将自动化城市规划问题制定为深度生成学习的任务。目的是给定针对目标区域的周围上下文产生配置张量。 3)我们提供量化评估指标,并进行广泛的实验,以证明我们框架的有效性。
translated by 谷歌翻译
在现实世界应用中的深度神经网络(DNN)的成功受益于丰富的预训练模型。然而,回溯预训练模型可以对下游DNN的部署构成显着的特洛伊木马威胁。现有的DNN测试方法主要旨在在对抗性设置中找到错误的角壳行为,但未能发现由强大的木马攻击所制作的后门。观察特洛伊木马网络行为表明,它们不仅由先前的工作所提出的单一受损神经元反射,而且归因于在多个神经元的激活强度和频率中的关键神经路径。这项工作制定了DNN后门测试,并提出了录音机框架。通过少量良性示例的关键神经元的差异模糊,我们识别特洛伊木马路径,特别是临界人,并通过模拟所识别的路径中的关键神经元来产生后门测试示例。广泛的实验表明了追索者的优越性,比现有方法更高的检测性能。通过隐秘的混合和自适应攻击来检测到后门的录音机更好,现有方法无法检测到。此外,我们的实验表明,录音所可能会揭示模型动物园中的模型的潜在潜在的背面。
translated by 谷歌翻译
溶剂基碳捕获系统(CCSS)中的CO2捕获效率尺寸依赖性取决于气体溶剂界面(IA),使IA在CCS设计中的基础攻击最大化。虽然可以通过计算流体动力学(CFD)仿真估计与特定CCS设计的IA,但是使用CFD导出与许多CCS设计相关的IAS,这是昂贵的。幸运的是,以前的工作(如深液)(DF)(Kim等人,2019)表明,通过用神经网络(NN)代理商兑忠实地模仿CFD仿真过程的CFD模拟器来实现大型仿真加速度。这提高了对CFD模拟器的快速,准确更换的可能性,从而有效地逼近CCS设计优化所需的IAS。因此,在这里,我们建立在DF方法中,以开发成功应用于我们复杂的碳捕获CFD模拟的代理。我们优化的DF样式替代商会产生大型加速(4000X),同时获得位于训练配置范围内的未见CCS配置中的IA相对误差低至4%。这提示了NN代理人的CCS设计优化问题的承诺。尽管如此,DF对CCS设计具有固有的局限性(例如,培训模型的有限可转换性至新CCS填料)。我们与思想结束以解决这些挑战。
translated by 谷歌翻译