神经网络在从颜色图像中提取几何信息方面取得了巨大成功。特别是,在现实世界中,单眼深度估计网络越来越可靠。在这项工作中,我们研究了这种单眼深度估计网络对半透明体积渲染图像的适用性。由于众所周知,在没有明确定义的表面的情况下,深度很难在体积的场景中定义,因此我们考虑在实践中出现的不同深度计算,并比较了在评估期间考虑不同程度的这些不同解释的最先进的单眼深度估计方法渲染中的不透明度。此外,我们研究了如何扩展这些网络以进一步获取颜色和不透明度信息,以便基于单个颜色图像创建场景的分层表示。该分层表示由空间分离的半透明间隔组成,这些间隔是复合到原始输入渲染的。在我们的实验中,我们表明,现有的单眼深度估计方法的适应性在半透明体积渲染上表现良好,该渲染在科学可视化领域具有多种应用。
translated by 谷歌翻译