虽然最先进的视觉变压器模型实现了图像分类的有希望的结果,但它们是非常昂贵的并且需要许多GFLOPS。尽管可以通过减少网络中的令牌数量来降低视觉变压器的GFLOPS,但是没有对所有输入图像的最佳设置。因此,在这项工作中,我们引入了可分辨率的无参数自适应令牌采样(ATS)模块,可以插入任何现有的视觉变压器架构。通过评分和自适应采样重要令牌,在视觉变压器上实现视觉变压器。结果,令牌的数量不再静态,但是每个输入图像都变化。通过将ATS集成为当前变压器块内的附加层,我们可以将它们转换为具有自适应令牌的更高效的视觉变压器。由于ATS是一种无参数模块,因此它可以作为即插即用模块添加到从货架上的预制视觉变压器中,从而在没有任何额外训练的情况下减少他们的GFLOP。但是,由于其可分辨动的设计,人们还可以培训配有ATS的视觉变压器。通过将其添加到多个最先进的视觉变压器,我们在想象成数据集上进行评估。我们的评估表明,通过将计算成本(GFLOPS)降低37%,在保留准确性时,该模块通过降低了37%,提高了最先进的模块。
translated by 谷歌翻译
强化学习和最近的深度增强学习是解决如Markov决策过程建模的顺序决策问题的流行方法。问题和选择算法和超参数的RL建模需要仔细考虑,因为不同的配置可能需要完全不同的性能。这些考虑因素主要是RL专家的任务;然而,RL在研究人员和系统设计师不是RL专家的其他领域中逐渐变得流行。此外,许多建模决策,例如定义状态和动作空间,批次的大小和批量更新的频率以及时间戳的数量通常是手动进行的。由于这些原因,RL框架的自动化不同组成部分具有重要意义,近年来它引起了很多关注。自动RL提供了一个框架,其中RL的不同组件包括MDP建模,算法选择和超参数优化是自动建模和定义的。在本文中,我们探讨了可以在自动化RL中使用的文献和目前的工作。此外,我们讨论了Autorl中的挑战,打开问题和研究方向。
translated by 谷歌翻译
听诊器录制的胸部声音为新生儿的偏远有氧呼吸健康监测提供了机会。然而,可靠的监控需要高质量的心脏和肺部声音。本文介绍了新生胸部声音分离的新型非负基质分子(NMF)和非负矩阵协同分解(NMCF)方法。为了评估这些方法并与现有的单源分离方法进行比较,产生人工混合物数据集,包括心脏,肺和噪音。然后计算用于这些人造混合物的信噪比。这些方法也在现实世界嘈杂的新生儿胸部声音上进行测试,并根据生命符号估计误差评估,并在我们以前的作品中发达1-5的信号质量得分。此外,评估所有方法的计算成本,以确定实时处理的适用性。总的来说,所提出的NMF和NMCF方法都以2.7db到11.6db的下一个最佳现有方法而言,对于人工数据集,0.40至1.12的现实数据集的信号质量改进。发现10S记录的声音分离的中值处理时间为NMCF和NMF的342ms为28.3。由于稳定且稳健的性能,我们认为我们的提出方法可用于在真实的环境中弃绝新生儿心脏和肺部。提出和现有方法的代码可以在:https://github.com/egrooby-monash/heart-and-lung-sound-eparation。
translated by 谷歌翻译
在早期设计阶段,应为所需室内环境质量(IEQ)进行太阳阴凉设计。这个领域可能非常具有挑战性和耗时需要专家,复杂的软件和大量的钱。本研究的主要目的是设计一个简单的工具来研究各种型号的太阳阴影,并在早期阶段更容易且更快地做出决定。数据库生成方法,人工智能和优化已被用于实现这一目标。该工具包括两个主要部分。预测用户所选模型的性能以及提出有效参数和2.向用户提出最佳预准备模型。在这方面,最初,具有可变参数的侧向升鞋盒模型是参数建模的,并且将五种常见的太阳阴影模型应用于空间。对于每个太阳阴影和没有阴影的状态,模拟了与日光和眩光,视图和初始成本有关的指标。本研究中生成的数据库包括87912个替代和六个计算的指标,引入优化的机器学习模型,包括神经网络,随机Forrest,支持向量回归和K最近邻居。根据结果​​,最准确和最快的估计模型是随机的Forrest,R2_Score为0.967至1.然后,进行敏感性分析以确定每个阴影模型的最有影响力的参数和没有它的状态。这种分析区分了最有效的参数,包括窗口方向,WWR,房间宽度,长度和阴影深度。最后,通过利用NSGA II算法优化机器学习模型的估计功能,识别了大约7300个最佳模型。开发的工具可以为每个设计的各种设计替代品评估各种设计替代品。
translated by 谷歌翻译
仅在合成数据上培训的最先进的立体声匹配网络通常无法概括到更具挑战性的真实数据域。在本文中,我们试图展开阻碍网络从跨域推广网络的重要因素:通过快捷学习的镜头。我们证明了立体声匹配网络中的特征表示的学习受合成数据伪影(快捷键属性)的严重影响。为了缓解此问题,我们提出了一种信息 - 理论快捷方式避免〜(ITSA)方法,以自动限制与要素表示的快捷键相关信息。因此,我们的提出方法通过最大限度地减少潜在特征的灵敏度来了解强大而快捷的不变性功能。为避免直接输入灵敏度优化的禁止计算成本,我们提出了一种有效但可行的算法来实现鲁棒性。我们表明,使用这种方法,纯粹对合成数据训练的最先进的立体声匹配网络可以有效地推广到具有挑战性和以前看不见的真实数据场景。重要的是,所提出的方法可以增强合成训练网络的鲁棒性,以至于它们优于他们的微调对应物(在实际数据上)以充分挑战域外立体数据集。
translated by 谷歌翻译
我们研究机器学习(ML)和深度学习(DL)算法的能力,基于地下温度观察推断表面/地面交换通量。观察和助势是由代表哥伦比亚河附近的高分辨率数值模型,位于华盛顿州东南部的能源部汉福德遗址附近。随机测量误差,不同幅度的加入合成温度观察。结果表明,两个ML和DL方法可用于推断表面/地面交换通量。 DL方法,尤其是卷积神经网络,当用于用施加的平滑滤波器解释噪声温度数据时越高。然而,ML方法也表现良好,它们可以更好地识别减少数量的重要观察,这对于测量网络优化也是有用的。令人惊讶的是,M1和DL方法比向下通量更好地推断出向上的助焊剂。这与使用数值模型从温度观测推断出来的先前发现与先前的发现与先前的发现相反,并且可能表明将ML或DL推断的组合使用与数值推断相结合可以改善河流系统下方的助焊剂估计。
translated by 谷歌翻译
肺癌近年来一直是最普遍的疾病之一。根据该领域的研究,每年在美国确定超过20万个案件。不受控制的繁殖和肺细胞的生长导致恶性肿瘤形成。最近,深入学习算法,特别是卷积神经网络(CNN),已成为自动诊断疾病的高级方式。本文的目的是审查不同的模型,导致诊断早期肺癌的不同准确性和敏感性,并帮助该领域的医生和研究人员。这项工作的主要目的是确定基于深度学习的肺癌存在的挑战。经过系统地编写了调查,这些调查结合了定期的映射和文献综述,从2016年到2021年审查该领域的32次会议和期刊文章。在分析和审查条款后,正在回答条款中提出的问题。由于对相关文章的完全审查和系统化,本领域,这项研究优于该领域的其他综述文章。
translated by 谷歌翻译
我们呈现PIFENET,一种高效准确的实时3D探测器,用于点云的行人检测。我们解决了在检测行人时遇到的3D对象检测框架的两个挑战:Partion云中的柱特征的表达力量和小型行人的小占领区。首先,我们引入了一个可堆叠的柱子感知注意力(PAA)模块,用于增强的柱子特征提取,同时抑制点云中的噪声。通过将多点感知池,点亮,通道和任务感知注意与到一个简单的模块集成到一个简单的模块,在需要几乎额外的计算资源的同时提高表示功能。我们还存在Mini-Bifpn,一个小而有效的特征网络,创建双向信息流和多级串尺度特征融合,以更好地集成多分辨率功能。我们的方法在Kitti Peistrian Bev和3D排行榜中排名第一,同时以每秒26帧(FPS)运行,并在Nuscenes检测基准上实现最先进的性能。
translated by 谷歌翻译
目的:确定逼真,但是电磁图的计算上有效模型可用于预先列车,具有广泛的形态和特定于给定条件的形态和异常 - T波段(TWA)由于创伤后应激障碍,或重点 - 在稀有人的小型数据库上显着提高了性能。方法:使用先前经过验证的人工ECG模型,我们生成了180,000人的人工ECG,有或没有重要的TWA,具有不同的心率,呼吸率,TWA幅度和ECG形态。在70,000名患者中培训的DNN进行分类为25种不同的节奏,将输出层修改为二进制类(TWA或NO-TWA,或等效,PTSD或NO-PTSD),并对人工ECG进行转移学习。在最终转移学习步骤中,DNN在ECG的培训和交叉验证,从12个PTE和24个控件,用于使用三个数据库的所有组合。主要结果:通过进行转移学习步骤,使用预先培训的心律失常DNN,人工数据和真实的PTSD相关的心电图数据,发现了最佳性能的方法(AUROC = 0.77,精度= 0.72,F1-SCATE = 0.64) 。从训练中删除人工数据导致性能的最大下降。从培训中取出心律失常数据提供了适度但重要的,表现下降。最终模型在人工数据上显示出在性能下没有显着下降,表明没有过度拟合。意义:在医疗保健中,通常只有一小部分高质量数据和标签,或更大的数据库,质量较低(和较差的相关)标签。这里呈现的范式,涉及基于模型的性能提升,通过在大型现实人工数据库和部分相关的真实数据库上传输学习来提供解决方案。
translated by 谷歌翻译
胎儿心电图(FECG)首先在20世纪初从母体腹表面记录。在过去的五十年中,最先进的电子技术和信号处理算法已被用于将非侵入性胎儿心电图转化为可靠的胎儿心脏监测技术。在本章中,已经对来自非侵入性母亲腹部录像进行了建模,提取和分析的主要信号处理技术,并详细介绍了来自非侵入性母亲腹部录像的型号的建模,提取和分析。本章的主要主题包括:1)FECG的电生理学从信号处理视点,2)母体体积传导介质的数学模型和从体表的FECG的波形模型,3)信号采集要求,4)基于模型的FECG噪声和干扰取消的技术,包括自适应滤波器和半盲源分离技术,以及5)胎儿运动跟踪和在线FECG提取的最近算法的进步。
translated by 谷歌翻译