在本文中,我们专注于3D形式抽象和语义分析的两个任务。这与目前的方法形成对比,仅关注3D形状抽象或语义分析。此外,以前的方法难以产生实例级语义结果,其限制了它们的应用。我们提出了一种用于联合估计3D形式抽象和语义分析的新方法。我们的方法首先为3D形状产生许多3D语义候选区域;然后,我们采用这些候选者直接预测语义类别,并使用深卷积神经网络同时细化候选地区的参数。最后,我们设计一种融合预测结果并获得最终语义抽象的算法,该抽象被显示为对标准非最大抑制的改进。实验结果表明,我们的方法可以产生最先进的结果。此外,我们还发现我们的结果可以很容易地应用于实例级语义部分割和形状匹配。
translated by 谷歌翻译
广义procrustes分析(GPA)是通过估计转换将多种形状带入共同参考的问题。 GPA已广泛研究了欧几里得和仿射转化。我们引入了具有可变形转换的GPA,这形成了一个更广泛和困难的问题。我们专门研究了称为线性基扭曲(LBW)的一类转换,该转换包含仿射转换和大多数常规变形模型,例如薄板样条(TPS)。具有变形的GPA是一个无凸的不受限制问题。我们使用两个形状约束来解决可变形GPA的基本歧义,这需要形状协方差的特征值。这些特征值可以独立计算为先验或后部。我们根据特征值分解给出了可变形GPA的封闭形式和最佳解决方案。该解决方案处理正则化,有利于平滑的变形场。它要求转换模型满足自由翻译的基本属性,该译本断言该模型可以实施任何翻译。我们表明,幸运的是,对于大多数常见的转换模型,包括仿射模型和TPS模型,这一属性是正确的。对于其他模型,我们为GPA提供了另一种封闭式解决方案,该解决方案与自由翻译模型的第一个解决方案完全吻合。我们提供用于计算解决方案的伪代码,导致提出的DEFPA方法,该方法快速,全球最佳且广泛适用。我们验证了我们的方法并将其与以前的六个不同2D和3D数据集的工作进行比较,并特别注意从交叉验证中选择超参数。
translated by 谷歌翻译
人类骨骼数据由于其背景鲁棒性和高效率而受到行动识别的越来越多。在基于骨架的动作识别中,图形卷积网络(GCN)已成为主流方法。本文分析了基于GCN的模型的基本因素 - 邻接矩阵。我们注意到,大多数基于GCN的方法基于人类天然骨架结构进行其邻接矩阵。根据我们以前的工作和分析,我们建议人类的自然骨骼结构邻接矩阵不适合基于骨架的动作识别。我们提出了一个新的邻接矩阵,该矩阵放弃了所有刚性邻居的连接,但使该模型可以适应地学习关节的关系。我们对两个基于骨架的动作识别数据集(NTURGBD60和FINEGYM)进行了验证模型进行广泛的实验和分析。全面的实验结果和分析表明,1)最广泛使用的人类天然骨骼结构邻接矩阵在基于骨架的动作识别中不适合; 2)所提出的邻接矩阵在模型性能,噪声稳健性和可传递性方面表现出色。
translated by 谷歌翻译
交通信号控制(TSC)是一个高风险域,随着交通量在全球的增长而增长。越来越多的作品将加固学习(RL)应用于TSC;RL可以利用大量的流量数据来提高信号效率。但是,从未部署基于RL的信号控制器。在这项工作中,我们提供了对TSC进行RL之前必须解决的挑战的首次审查。我们专注于四个涉及(1)检测不确定性的挑战,(2)通信的可靠性,(3)合规性和解释性以及(4)异构道路使用者。我们表明,基于RL的TSC的文献在应对每个挑战方面取得了一些进展。但是,更多的工作应采用系统思维方法,以考虑其他管道组件对RL的影响。
translated by 谷歌翻译
各种优化问题采用最​​小规范优化的形式。在本文中,我们研究了两个逐步构建的最小规范优化问题之间最佳值的变化,第二个测量值包括新的测量。我们证明了一个精确的方程式来计算线性最小规范优化问题中最佳值的变化。通过本文的结果,可以将最佳值的更改预先计算为指导在线决策的指标,而无需解决第二个优化问题,只要解决了第一个优化问题的解决方案和协方差。该结果可以扩展到线性最小距离优化问题,并通过线性化对(非线性)平等约束进行非线性最小距离优化。本文中的这一推论为RA-L 2018 Bai等人所示的经验观察提供了理论上的自我解释。作为另一个贡献,我们提出了另一个优化问题,即以给定姿势对齐两个轨迹,以进一步演示如何使用度量标准。用数值示例验证了度量的准确性,这通常是令人满意的(请参阅RA-L 2018 Bai等人}中的实验),除非在某些极其不利的情况下。最后但并非最不重要的一点是,通过提议的度量计算最佳值的速度至少要比直接解决相应的优化问题快一点。
translated by 谷歌翻译
估计看不见对象的6D姿势对许多现实世界应用非常有需求。但是,当前的最新姿势估计方法只能处理以前训练的对象。在本文中,我们提出了一项新任务,以使算法能够估计测试过程中新颖对象的6D姿势估计。我们收集一个具有真实图像和合成图像的数据集,并且在测试集中最多可见48个看不见的对象。同时,我们提出了一个名为infimum Add(IADD)的新指标,这是对具有不同类型姿势歧义的对象的不变测量。还提供了针对此任务的两个阶段基线解决方案。通过训练端到端的3D对应网络,我们的方法可以准确有效地找到看不见的对象和部分视图RGBD图像之间的相应点。然后,它使用算法鲁棒到对象对称性从对应关系中计算6D姿势。广泛的实验表明,我们的方法的表现优于几个直观基线,从而验证其有效性。所有数据,代码和模型都将公开可用。项目页面:www.graspnet.net/unseen6d
translated by 谷歌翻译
辐射脑病(REP)是鼻咽癌(NPC)放疗最常见的并发症。非常希望协助临床医生优化NPC放射疗法方案,以减少放射疗法诱导的颞叶损伤(RTLI),该疗程根据REP发作的可能性。据我们所知,这是通过在NPC放射治疗方案中共同利用图像和非图像数据来预测放疗诱导的REP的首次探索。我们将代表预测作为生存分析任务,并根据一致性指数(CI)评估预测准确性。我们设计了一个深层多模式生存网络(MSN),该网络(MSN)具有两个特征提取器,以从多模式数据中学习判别特征。一个功能提取器在非图像数据上施加特征选择,另一个功能提取器从图像中学习视觉特征。因为直接使CI最大化的CI(BCI)损耗函数对每批采样不均匀。因此,我们提出了一种新型的加权CI(WCI)损失函数,以通过双平均操作分配其不同的权重有效地利用所有REP样本。我们进一步引入了WCI温度高参数,以增强样本对的风险差异,以帮助建模收敛。我们在私人数据集上广泛评估WCI,以证明其对同行的可爱性。实验结果还表明,NPC放射疗法的多模式数据可以为REP风险预测带来更多收益。
translated by 谷歌翻译
最近,在推荐系统领域中,一个关键问题隐约可见 - 没有进行严格评估的有效基准 - 因此,这会导致不可再生的评估和不公平的比较。因此,我们从实践理论和实验的角度进行研究,目的是为严格的评估做出基准建议。关于理论研究,一系列影响整个评估链中建议性能的超级因素通过对2017 - 2020年在八个顶级会议上发表的141篇论文进行的详尽评价进行了系统的总结和分析。然后,我们将它们分类为独立于模型和模型依赖性的超因子,并相应地定义和讨论了不同的严格评估模式。在实验研究中,我们通过将这些超级因子整合以进行严格的评估来发布DaisyREC 2.0文库,从而进行了整体经验研究,以揭示不同超级效应器对建议性能的影响。在理论和实验研究的支持下,我们最终通过提出标准化程序并在六个数据集上的六个评估指标中提供10个最先进的方法来创建严格评估的基准,以作为以后研究的参考。总体而言,我们的工作阐明了建议评估中的问题,为严格的评估提供了潜在的解决方案,并为进一步调查提供了基础。
translated by 谷歌翻译
提出了一个新颖的框架,用于使用模仿的增强学习(RL)解决最佳执行和放置问题。从拟议的框架中训练的RL代理商在执行成本中始终优于行业基准计时加权平均价格(TWAP)策略,并在样本外交易日期和股票方面表现出了巨大的概括。从三个方面实现了令人印象深刻的表现。首先,我们的RL网络架构称为双窗口Denoise PPO在嘈杂的市场环境中启用了有效的学习。其次,设计了模仿学习的奖励计划,并研究了一组全面的市场功能。第三,我们的灵活动作公式使RL代理能够解决最佳执行和放置,从而使性能更好地比分别解决个体问题。 RL代理的性能在我们的多代理现实历史限制顺序模拟器中进行了评估,在该模拟器中,对价格影响进行了准确评估。此外,还进行了消融研究,证实了我们框架的优势。
translated by 谷歌翻译
随着自然语言处理的快速发展,信息的最新进展隐藏在秘密地嵌入秘密信息中。这些算法要么修改给定的封面文本,要么直接生成包含秘密信息的文本,但是,该文本并非可逆,这意味着除非预先共享许多侧面信息,否则无法完美地恢复原始文本。为了解决这个问题,在本文中,我们提出了一个通用框架,将秘密信息嵌入给定的封面文本中,为此,可以从标记的文本中完美地检索到嵌入式信息和原始封面文本。提出方法的主要思想是使用蒙版的语言模型来生成如此明显的文本,以至于可以通过收集某些位置的单词来重建封面文本,并且可以处理其他位置的单词来提取秘密信息。我们的结果表明,原始封面文本和秘密信息可以成功地嵌入和提取。同时,带有秘密信息的标记文本具有良好的流利性和语义质量,表明所提出的方法具有令人满意的安全性,这已通过实验结果验证。此外,不需要数据HIDER和数据接收器共享语言模型,从而大大降低了侧面信息,因此在应用程序中具有良好的潜力。
translated by 谷歌翻译