采样在机器学习方法中无处不在。由于大数据集和模型复杂性的增长,我们希望在训练A表示时学习和适应采样过程。为了实现这一宏伟的目标,已经提出了各种抽样技术。但是,他们中的大多数要么使用固定采样方案,要么基于简单的启发式方法调整采样方案。他们不能选择在不同阶段进行模型培训的最佳样本。受认知科学中的“思考,快速和系统2)的启发,我们提出了一种奖励指导的采样策略,称为自适应样本,并奖励(ASR)来应对这一挑战。据我们所知,这是利用强化学习(RL)解决代表学习中抽样问题的第一项工作。我们的方法最佳地调整了采样过程以实现最佳性能。我们通过基于距离的采样来探索样品之间的地理关系,以最大程度地提高整体累积奖励。我们将ASR应用于基于相似性的损失函数中的长期抽样问题。信息检索和聚类中的经验结果证明了ASR在不同数据集中的出色性能。我们还讨论了一种令人着迷的现象,我们将其称为实验中的“ ASR重力”。
translated by 谷歌翻译
元素是单细胞曲线的不相交和均匀的组,代表离散和高度颗粒细胞状态。现有的元算法倾向于仅使用一种模态来推断元素,即使单细胞多摩变数据集谱图在同一细胞内多个分子模态。在这里,我们提出\ textbf {c} ross-m \ textbf {o} dal \ textbf {e} mbedding for \ textbf {m} etacell标识(coem),它利用嵌入式空间,利用scatac-seq和scatac-seq和scatac-seq和SCRNA-SEQ执行聚合,平衡精细分辨率和足够的测序覆盖范围之间的权衡。COEM通过有效识别具有连续和离散细胞类型的数据集的准确且分离良好的元素来优于最先进的方法海科。此外,COEM显着改善了峰到基因的关联分析,并促进了复杂的基因调节推理任务。
translated by 谷歌翻译
对话机阅读理解(CMRC)旨在帮助计算机理解自然语言文本,然后进行多转交谈以回答与文本有关的问题。现有方法通常需要三个步骤:(1)基于需要推理的决策; (2)如果上述决定的要求,请跨越提取; (3)基于提取的跨度重新绘制问题。但是,对于几乎所有这些方法,跨度提取和问题的改写步骤无法完全利用决策制定步骤中的细粒度构成推理信息,因为它们的相对独立性将进一步扩大决策制定和问题措辞之间的信息差距。因此,为了解决这个问题,我们提出了一个基于共享参数机制的对话机读取理解理解的新颖端到端框架,称为Intailment推理T5(ET5)。尽管我们提出的框架轻量级,但实验结果表明,拟议的ET5以55.2的BLEU-4分数在Sharc排行榜上取得了新的最新结果。我们的模型和代码可在https://github.com/yottaxx/et5上公开获取。
translated by 谷歌翻译
最近,为了提高无监督的图像检索性能,通过设计语义相似性矩阵提出了许多无监督的哈希方法,该方法基于预先训练的CNN模型提取的图像功能之间的相似性。但是,这些方法中的大多数倾向于忽略图像中包含的高级抽象语义概念。直观地,概念在计算图像之间的相似性中起着重要作用。在实际情况下,每个图像都与某些概念相关联,如果两个图像共享更相同的概念,则两个图像之间的相似性将更大。受到上述直觉的启发,在这项工作中,我们提出了一种带有语义概念挖掘的新颖无监督的散列散布,称为UHSCM,该挖掘利用VLP模型来构建高质量的相似性矩阵。具体而言,首先收集一组随机选择的概念。然后,通过使用及时的工程进行视觉预审进(VLP)模型,该模型在视觉表示学习中表现出强大的力量,根据训练图像将一组概念降低。接下来,提出的方法UHSCM应用了VLP模型,并再次提示挖掘每个图像的概念分布,并基于挖掘的概念分布构建高质量的语义相似性矩阵。最后,以语义相似性矩阵作为指导信息,提出了一种新颖的散列损失,并提出了基于对比度损失的正则化项,以优化哈希网络。在三个基准数据集上进行的大量实验表明,所提出的方法在图像检索任务中优于最新基准。
translated by 谷歌翻译
流程挖掘的学科在医疗保健领域成功应用程序具有可靠的记录。在这样的研究领域,我们进行了与德国Uniklinik Aachen医院重症监护病房(ICU)病房有关的案例研究。这项工作的目的是双重的:开发一个规范模型,该模型代表了COVID-19患者治疗的临床指南,并分析观察到的行为(记录在医院的信息系统中)对此类准则的依从性。我们表明,通过一致性检查技术,可以分析COVID-19患者的护理过程,并强调与临床准则的主要偏差。结果为医生提供了改善过程并确保服务质量和患者满意度的有用指示。我们将结果模型作为开源BPMN文件共享。
translated by 谷歌翻译
机器学习潜力是分子模拟的重要工具,但是由于缺乏高质量数据集来训练它们的发展,它们的开发阻碍了它们。我们描述了Spice数据集,这是一种新的量子化学数据集,用于训练与模拟与蛋白质相互作用的药物样的小分子相关的潜在。它包含超过110万个小分子,二聚体,二肽和溶剂化氨基酸的构象。它包括15个元素,带电和未充电的分子以及广泛的共价和非共价相互作用。它提供了在{\ omega} b97m-d3(bj)/def2-tzVPPD理论水平以及其他有用的数量(例如多极矩和键阶)上计算出的力和能量。我们在其上训练一组机器学习潜力,并证明它们可以在化学空间的广泛区域中实现化学精度。它可以作为创建可转移的,准备使用潜在功能用于分子模拟的宝贵资源。
translated by 谷歌翻译
部分标签学习(PLL)是一项奇特的弱监督学习任务,其中训练样本通常与一组候选标签而不是单个地面真理相关联。尽管在该域中提出了各种标签歧义方法,但他们通常假设在许多现实世界应用中可能不存在类平衡的方案。从经验上讲,我们在面对长尾分布和部分标记的组合挑战时观察到了先前方法的退化性能。在这项工作中,我们首先确定先前工作失败的主要原因。随后,我们提出了一种新型的基于最佳运输的框架太阳能,它允许完善被歧义的标签,以匹配边缘级别的先验分布。太阳能还结合了一种新的系统机制,用于估计PLL设置下的长尾类先验分布。通过广泛的实验,与先前的最先进的PLL方法相比,太阳能在标准化基准方面表现出基本优势。代码和数据可在以下网址获得:https://github.com/hbzju/solar。
translated by 谷歌翻译
为了解决数学单词问题,人类学生利用达到不同方程解决方案的各种推理逻辑。但是,自动求解器的主流序列到序列方法旨在解码通过人类注释监督的固定溶液方程。在本文中,我们通过利用一组控制代码来指导模型考虑某些推理逻辑并解码从人类参考转换的相应方程式表达式来指导模型来考虑某些推理逻辑并解码相应的方程式表达式来提出一个受控方程生成求解器。经验结果表明,我们的方法普遍提高了单人(MATH23K)和多项(draw1k,hmwp)基准的性能,在具有挑战性的多重未知数据集上,高达13.2%的准确性。
translated by 谷歌翻译
实体对齐(EA)的目的是在不同的知识图(kgs)中找到指代现实世界中同一对象的实体。最近的研究结合了时间信息,以增强KGS的表示。暂时KGS(TKG)之间的EA的现有方法利用时间感知的注意机制将关系和时间信息纳入实体嵌入中。该方法通过使用时间信息优于先前的方法。但是,我们认为,由于大多数TKG具有统一的时间表示,因此不必学习kgs中的时间信息的嵌入。因此,我们提出了一个简单的图形神经网络(GNN)模型,并结合了时间信息匹配机制,该模型以更少的时间和更少的参数实现了更好的性能。此外,由于对齐种子很难在现实世界应用中标记,因此我们还提出了一种通过TKG的时间信息生成无监督比对种子的方法。公共数据集的广泛实验表明,我们的监督方法显着优于先前的方法,而无监督的方法具有竞争性能。
translated by 谷歌翻译
在本文中,我们考虑了神经视频压缩(NVC)中位分配的问题。由于帧参考结构,使用相同的R-D(速率)权衡参数$ \ lambda $的当前NVC方法是次优的,这带来了位分配的需求。与以前基于启发式和经验R-D模型的方法不同,我们建议通过基于梯度的优化解决此问题。具体而言,我们首先提出了一种基于半损坏的变异推理(SAVI)的连续位实现方法。然后,我们通过更改SAVI目标,使用迭代优化提出了一个像素级隐式分配方法。此外,我们基于NVC的可区分特征得出了精确的R-D模型。我们通过使用精确的R-D模型证明其等效性与位分配的等效性来展示我们的方法的最佳性。实验结果表明,我们的方法显着改善了NVC方法,并且胜过现有的位分配方法。我们的方法是所有可区分NVC方法的插件,并且可以直接在现有的预训练模型上采用。
translated by 谷歌翻译