自然语言处理(NLP)通过分析社交媒体或新闻媒体的文本来证明支持财务决策的巨大潜力。在这项工作中,我们建立了一个平台,可以系统地研究NLP股票自动交易算法。与以前的工作相反,我们的平台具有三个功能:(1)我们为每个特定股票提供财务新闻。 (2)我们为每种股票提供各种股票因素。 (3)我们评估了更多与财务相关的指标的绩效。这样的设计使我们能够在更现实的环境中开发和评估NLP库存自动交易算法。除了设计评估平台和数据集集合外,我们还通过提出一个系统来自动从各种输入信息中学习良好的功能表示形式来做出技术贡献。我们算法的关键是一种称为语义角色标签池(SRLP)的方法,该方法利用语义角色标签(SRL)来创建每个新闻段的紧凑表示。基于SRLP,我们进一步纳入了其他股票因素以进行最终预测。此外,我们提出了一种基于SRLP的自我监督的学习策略,以增强系统的分布概括性能。通过我们的实验研究,我们表明所提出的方法可以实现更好的性能,并胜过所有基本线的年度回报率,以及CSI300指数和XIN9指数的最大减收率。我们的ASTOCK数据集和代码可在https://github.com/jinanzou/astock上找到。
translated by 谷歌翻译