人工智能和神经科学都深受互动。人工神经网络(ANNS)是一种多功能的工具,用于研究腹侧视觉流中的神经表现,以及神经科学中的知识返回激发了ANN模型,以提高任务的性能。但是,如何将这两个方向合并到统一模型中较少研究。这里,我们提出了一种混合模型,称为深度自动编码器,具有神经响应(DAE-NR),其将来自视觉皮质的信息包含在ANN中,以实现生物和人造神经元之间的更好的图像重建和更高的神经表示相似性。具体地,对小鼠脑和DAE-NR的输入相同的视觉刺激(即自然图像)。 DAE-NR共同学会通过映射函数将编码器网络的特定层映射到腹侧视觉流中的生物神经响应,并通过解码器重建视觉输入。我们的实验表明,如果只有在联合学习,DAE-NRS可以(i)可以提高图像重建的性能,并且(ii)增加生物神经元和人工神经元之间的代表性相似性。 DAE-NR提供了一种关于计算机视觉和视觉神经科学集成的新视角。
translated by 谷歌翻译
基于模型的单幅图像脱水算法用尖锐的边缘和丰富的细节恢复图像,以牺牲低PSNR值。数据驱动的那些恢复具有高PSNR值的图像,但具有低对比度,甚至一些剩余的阴霾。在本文中,通过融合基于模型和数据驱动的方法来引入新颖的单图像脱水算法。通过基于模型的方法初始化透射图和大气光,并通过构成神经增强的深度学习方法来精制。通过使用传输地图和大气光来恢复无雾图像。实验结果表明,该算法可以从现实世界和合成朦胧图像中脱离雾度。
translated by 谷歌翻译
机器学习在医学图像分析中发挥着越来越重要的作用,产卵在神经影像症的临床应用中的新进展。之前有一些关于机器学习和癫痫的综述,它们主要专注于电生理信号,如脑电图(EEG)和立体脑电图(SEENG),同时忽略癫痫研究中神经影像的潜力。 NeuroImaging在确认癫痫区域的范围内具有重要的优点,这对于手术后的前诊所评估和评估至关重要。然而,脑电图难以定位大脑中的准确癫痫病变区。在这篇综述中,我们强调了癫痫诊断和预后在癫痫诊断和预后的背景下神经影像学和机器学习的相互作用。我们首先概述癫痫诊所,MRI,DWI,FMRI和PET中使用的癫痫和典型的神经影像姿态。然后,我们在将机器学习方法应用于神经影像数据的方法:i)将手动特征工程和分类器的传统机器学习方法阐述了两种方法,即卷积神经网络和自动化器等深度学习方法。随后,详细地研究了对癫痫,定位和横向化任务等分割,本地化和横向化任务的应用,以及与诊断和预后直接相关的任务。最后,我们讨论了目前的成就,挑战和潜在的未来方向,希望为癫痫的计算机辅助诊断和预后铺平道路。
translated by 谷歌翻译
大多数现有的视频文本发现基准测试专注于评估单一语言和具有有限数据的场景。在这项工作中,我们引入了大规模的双语,开放世界视频文本基准数据集(BovText)。 BovText有四个功能。首先,我们提供2,000多个具有超过1,75万多帧的视频,比现有最大数据集大25倍,其中包含录像中的附带文本。其次,我们的数据集涵盖了具有多种各种场景的30多个开放类别,例如Life VLog,驾驶,电影等。第三,为不同的代表提供了丰富的文本类型注释(即标题,标题或场景文本)视频中的意义。第四,BOVTEXT提供双语文本注释,以促进多种文化的生活和沟通。此外,我们提出了一个与变压器的端到端视频文本发现框架,被称为TransVtspotter,它通过简单但高效的关注的查询密钥机制解决了视频中的多东方文本。它将来自前一个帧的对象特征应用于当前帧的跟踪查询,并引入旋转角度预测以适合多大学实例。在ICDAR2015(视频)上,Transvtspotter以44.1%的Mota,9 FPS实现最先进的性能。 DataSet和TransVtspotter的代码可以在GitHub中找到:COM = Weijiawu = BovText和GitHub:Com = Weijiawu = Transvtspotter。
translated by 谷歌翻译
建议制度,依靠历史观察数据来模仿用户和物品之间的复杂关系,取得了巨大的成功,在现实世界中取得了巨大的成功。选择偏见是现有的现有观测数据基于方法的最重要问题之一,其实际上是由多种类型的不观察室的暴露策略引起的(例如促销和假期效应)。虽然已经提出了各种方法来解决这个问题,但它们主要依赖于隐含的脱叠技术,但没有明确建立未观察的曝光策略。通过明确重建曝光策略(简称休息),我们将推荐问题正式化为反事实推理,并提出了脱叠的社会推荐方法。在休息时,我们假设项目的曝光由潜在曝光策略,用户和项目控制。基于上述生成过程,首先通过识别分析提供我们方法的理论保证。其次,在社交网络和项目的帮助下,我们采用了变分自动编码器来重建潜在的曝光策略。第三,我们通过利用回收的曝光策略制定基于反事实推理的建议算法。四个现实世界数据集的实验,包括三个已发布的数据集和一个私人微信官方帐户数据集,展示了几种最先进的方法的显着改进。
translated by 谷歌翻译
在本文中,我们专注于3D形式抽象和语义分析的两个任务。这与目前的方法形成对比,仅关注3D形状抽象或语义分析。此外,以前的方法难以产生实例级语义结果,其限制了它们的应用。我们提出了一种用于联合估计3D形式抽象和语义分析的新方法。我们的方法首先为3D形状产生许多3D语义候选区域;然后,我们采用这些候选者直接预测语义类别,并使用深卷积神经网络同时细化候选地区的参数。最后,我们设计一种融合预测结果并获得最终语义抽象的算法,该抽象被显示为对标准非最大抑制的改进。实验结果表明,我们的方法可以产生最先进的结果。此外,我们还发现我们的结果可以很容易地应用于实例级语义部分割和形状匹配。
translated by 谷歌翻译
今天的网络世界难以多变量。在极端品种中收集的指标需要多变量算法以正确检测异常。然而,基于预测的算法,如被广泛证明的方法,通常在数据集中进行次优或不一致。一个关键的常见问题是他们努力成为一个尺寸适合的,但异常在自然中是独特的。我们提出了一种裁定到这种区别的方法。提出FMUAD - 一种基于预测,多方面,无监督的异常检测框架。FMUAD明确,分别捕获异常类型的签名性状 - 空间变化,时间变化和相关变化 - 与独立模块。然后,模块共同学习最佳特征表示,这是非常灵活和直观的,与类别中的大多数其他模型不同。广泛的实验表明我们的FMUAD框架始终如一地优于其他最先进的预测的异常探测器。
translated by 谷歌翻译
瞬间方法是密度估计的重要手段,但它们通常强烈依赖于可行功能的选择,这严重影响了性能。我们提出了使用样本矩阵的密度估计的非古典参数化,这不需要选择这种功能。参数化由kullback-leibler距离引起,并且它被证明存在并且是在不依赖于数据的简单的简单之前存在的解决方案,可以通过凸优化获得。仿真结果表明,所提出的估计估计估计多种模态密度的性能,这些估计是不同类型功能的混合物。
translated by 谷歌翻译
我们研究了数据集采样策略对推荐算法的排名性能的实际后果。通常在较大数据集的样本上进行培训和评估推荐系统。样品通常以幼稚或ad-hoc时尚服用:例如通过随机抽样数据集或通过选择具有许多交互的用户或项目。正如我们所示,常用的数据采样方案可能对算法性能产生重大后果。在此观察中,本文提出了三个主要贡献:(1)表征采样对算法性能的影响,就算法和数据集特征(例如稀疏性特征,顺序动态等); (2)设计SVP-CF,这是一种数据特定的采样策略,旨在保留采样后模型的相对性能,特别适用于长尾交互数据; (3)开发Oracle,数据Genie,它可以提出最有可能为给定数据集保留模型性能的采样方案。 Data-Genie的主要好处是它将允许推荐系统从业者快速原型并比较各种方法,同时保持对算法将保留算法性能,一旦算法在完整数据上进行了验证并部署。详细实验表明,使用数据Genie,我们可以丢弃比具有相同性能水平的采样策略更多的数据。
translated by 谷歌翻译
由于缺乏深度信息,单眼3D对象检测在自主驾驶中非常具有挑战性。本文提出了一种基于多尺度深度分层的单眼单目眼3D对象检测算法,它使用锚定方法检测每像素预测中的3D对象。在所提出的MDS-Net中,开发了一种新的基于深度的分层结构,以通过在对象的深度和图像尺寸之间建立数学模型来改善网络的深度预测能力。然后开发出新的角度损耗功能,以进一步提高角度预测的精度并提高训练的收敛速度。最终在后处理阶段最终应用优化的软,以调整候选盒的置信度。基蒂基准测试的实验表明,MDS-Net在3D检测中优于现有的单目3D检测方法,并在满足实时要求时进行3D检测和BEV检测任务。
translated by 谷歌翻译