这项工作涉及一个移动的目标,追逐在杂乱的环境中配备视觉传感器的飞行器的任务。与无障碍或稀疏环境相比,追踪者应该能够在飞行效率的同时进行手动和闭塞。为了通过实时重新计划来解决这些挑战,我们引入了一个指标Fortarget可见性并提出了一个级联追逐计划器。通过图搜索方法,我们首先生成一系列追逐走廊和路径,确保安全并优化可见性。在接下来的阶段,走廊和航路点被用作二次编程中的约束和客观,我们从中完成一个动态可行的追踪轨迹。该算法在多种密集环境中进行了测试。具有完整代码实现和GUI的模拟器AutoChaser可以在以下网址找到://github.com/icsl-Jeon/traj_gen_vis
translated by 谷歌翻译
深度学习推理加速器是从与Pthreads并行化的C语言软件程序合成的。软件实现使用着名的生产者/消费者模型,其中并行线程通过FIIFO队列互连。 LegUp高级综合(HLS)工具在并行FPGA硬件中合成线程,将软件并行性转换为空间并行性。生成一个完整的系统,在合成加速器中实现卷积,池化和填充,并在嵌入式ARM处理器上执行剩余任务。加速器结合了精确度降低,以及一种新的卷积零重量跳跃方法。在中型的英特尔Arria 10 SoC FPGA上,VGG-16的峰值性能为138有效GOPS。
translated by 谷歌翻译
我们提出了一种新的预测器组合算法,该算法基于潜在相关的参考预测器来改进给定的任务预测器。现有方法的局限性在于,为了发现潜在的任务依赖性,它们要么需要所有预测变量的已知参数形式,要么访问所有预测变量共同评估的单个固定数据集。为了克服这些限制,我们设计了一种新的非参数任务依赖性估计程序,该程序自动对齐不相交特征集的异构预测器的评估。我们的算法被实例化为一个强大的流形扩散过程,它共同改进了估计的预测分配和相应的任务依赖性。我们将该算法应用于相对属性排序问题,并证明它不仅扩展了预测器组合方法的应用范围,而且即使应用于经典预测器组合设置也优于现有方法。
translated by 谷歌翻译
深度网络本质上消耗大量内存。我们可以在保持性能的同时减少内存需求。特别是,在这项工作中,我们解决了多个任务的记忆有效学习问题。为此,我们提出了一种新颖的网络体系结构,可以为不同的任务生成多个不同配置的网络,称为深度虚拟网络(DVN)。每个DVN都是专门的单一任务和分层结构。包含对应于不同数量的参数的多个层次结构的分层结构使得能够对不同的存储器预算进行多个推断。深度虚拟网络的构建块基于网络参数的不相交集合,我们将其称为单元。深度虚拟网络中最低级别的层次结构是一个单元,更高级别的层次结构包含较低级别的单元和其他附加单元。给定参数数量的预算,可以选择不同级别的深度虚拟网络来执行任务。一个单元可以由不同的DVN共享,允许单个网络中的多个DVN。此外,共享单元通过从其他任务中学到的额外知识为目标任务提供帮助。这种DVN的协作配置使得以记忆感知方式处理不同任务成为可能。我们的实验表明,所提出的方法优于现有的多任务方法。值得注意的是,我们的效率比其他任务更高,因为它允许对所有任务进行内存感知推理。
translated by 谷歌翻译
Machine learning (ML) techniques are enjoying rapidly increasing adoption. However, designing and implementing the systems that support ML models in real-world deployments remains a significant obstacle, in large part due to the radically different development and deployment profile of modern ML methods, and the range of practical concerns that come with broader adoption. We propose to foster a new systems machine learning research community at the intersection of the traditional systems and ML communities, focused on topics such as hardware systems for ML, software systems for ML, and ML optimized for metrics beyond predictive accuracy. To do this, we describe a new conference, SysML, that explicitly targets research at the intersection of systems and machine learning with a program committee split evenly between experts in systems and ML, and an explicit focus on topics at the intersection of the two.
translated by 谷歌翻译
最大的k-plex问题是一个计算复杂的问题,它来自图论的社会网络研究。本文提出了有效的混合局部搜索,用于解决最近提出的突破局部搜索算法与强化学习策略的最大k-plex问题。所提出的方法包括区分特征,例如:基于交换操作符的统一邻域搜索,针对动作的距离和质量奖励以及基于强化学习的新参数控制机制。对来自第二次DIMACS挑战的80个基准实例的最大k-问题(k = 2,3,4,5)的广泛实验表明,所提出的方法可以与除了四个问题实例之外的所有文献中的最佳已知结果相匹配。此外,所提出的算法能够找到32个新的最佳解决方案。
translated by 谷歌翻译
在视觉监控系统中,有必要认识到人们处理诸如电话,杯子或塑料袋之类物体的行为。在本文中,为了解决这个问题,我们提出了一个新的框架,用于通过图形卷积网络使用人类和对象姿势识别与对象相关的人类行为。在此框架中,我们通过选择性地对视频中的信息帧进行采样来构建可靠人类的骨架图,其中包括在姿势估计中获得的具有高置信度分数的人类关节。从采样帧生成的骨架图表示与空间域和时域中的对象位置相关的人体姿势,并且这些图被用作图卷积网络的输入。通过开放基准和我们自己的数据集进行实验,我们验证了框架的有效性,因为我们的方法优于基于骨架的动作识别的最先进方法。
translated by 谷歌翻译
在这项工作中,我们报告了结合IEEE国际生物医学成像研讨会(ISBI)2016和国际医学影像计算机辅助干预会议(MICCAI)2017年组织的肝肿瘤分割基准(LITS)的设置和结果。将24种有效的最先进的肝脏和肝脏肿瘤分段算法应用于一组131个计算机断层扫描(CT)体积,具有不同类型的肿瘤对比度水平(高强度/低强度),组织异常(转移瘤)大小和不同程度的病变。已提交的算法已在70个未公开的卷上进行了测试。该数据集是与七家医院和研究机构合作创建的,由三位独立的放射科医师手动审查。我们发现没有一种算法对肝脏和肿瘤表现最佳。最佳肝脏分割算法的Dice评分为0.96(MICCAI),而对于肿瘤分割,最佳算法评估为0.67(ISBI)和0.70(MICCAI)。 LITS图像数据和手动注释继续通过在线评估系统公开提供,作为持续的基准测试资源。
translated by 谷歌翻译
关于语境化词语表示问题的研究 - 用于句子理解的可重用神经网络组件的发展 - 最近出现了一系列进展,其中心是使用ELMo等方法进行语言建模的无监督预训练任务。本文提供了第一个大规模的系统研究,比较了该语境中不同的预训练任务,既作为语言建模的补充,也作为潜在的替代。该研究的主要结果支持使用语言模型作为预训练任务,并使用语言模型的多任务学习在可比模型中设置新的技术水平。然而,仔细观察这些结果可以发现令人担忧的强大基线和跨越目标任务的惊人变化的结果,这表明广泛使用的预训练和冻结句子编码器的范例可能不是进一步工作的理想平台。
translated by 谷歌翻译
我们提出极端视图合成,当输入图像的数量很小时,新视图外推的解决方案。在这种背景下,闭塞和深度不确定性是两个最紧迫的问题,并且随着外推程度的增加而恶化。最先进的方法通过平均显式几何约束或学习先验来解决这个问题。我们的关键见解是,只有对深度不确定性和图像先验进行建模才能解决极端情况。我们首先为新视图生成深度概率体积并合成所搜索图像的估计。然后,我们使用学习者与深度不确定性相结合来改进它。我们的方法是第一个显示高达30倍的基线放大倍数的视觉上令人满意的结果。
translated by 谷歌翻译