非正交多访问(NOMA)是一项有趣的技术,可以根据未来的5G和6G网络的要求实现大规模连通性。尽管纯线性处理已经在NOMA系统中达到了良好的性能,但在某些情况下,非线性处理是必须的,以确保可接受的性能。在本文中,我们提出了一个神经网络体系结构,该架构结合了线性和非线性处理的优势。在图形处理单元(GPU)上的高效实现证明了其实时检测性能。使用实验室环境中的实际测量值,我们显示了方法比常规方法的优越性。
translated by 谷歌翻译
Adaptive partial linear beamforming meets the need of 5G and future 6G applications for high flexibility and adaptability. Choosing an appropriate tradeoff between conflicting goals opens the recently proposed multiuser (MU) detection method. Due to their high spatial resolution, nonlinear beamforming filters can significantly outperform linear approaches in stationary scenarios with massive connectivity. However, a dramatic decrease in performance can be expected in high mobility scenarios because they are very susceptible to changes in the wireless channel. The robustness of linear filters is required, considering these changes. One way to respond appropriately is to use online machine learning algorithms. The theory of algorithms based on the adaptive projected subgradient method (APSM) is rich, and they promise accurate tracking capabilities in dynamic wireless environments. However, one of the main challenges comes from the real-time implementation of these algorithms, which involve projections on time-varying closed convex sets. While the projection operations are relatively simple, their vast number poses a challenge in ultralow latency (ULL) applications where latency constraints must be satisfied in every radio frame. Taking non-orthogonal multiple access (NOMA) systems as an example, this paper explores the acceleration of APSM-based algorithms through massive parallelization. The result is a GPUaccelerated real-time implementation of an orthogonal frequency-division multiplexing (OFDM)based transceiver that enables detection latency of less than one millisecond and therefore complies with the requirements of 5G and beyond. To meet the stringent physical layer latency requirements, careful co-design of hardware and software is essential, especially in virtualized wireless systems with hardware accelerators.
translated by 谷歌翻译
一些研究人员专注于研究驾驶时驾驶员的认知行为和精神负荷。随着心理和感知负荷水平而变化的自适应界面可能有助于减少事故并增强驾驶员体验。在本文中,我们分析了心理工作量和感知负荷对心理生理维度的影响,并在双车间互动的双重任务方案中为精神和感知负荷估算提供了基于机器学习的框架(https://github.com/ Amrgomaaelhady/mwl-pl-估计器)。我们使用现成的非侵入传感器,可以轻松地集成到车辆系统中。我们的统计分析表明,尽管心理工作负载影响了一些心理生理方面,但感知负荷几乎没有影响。此外,我们通过融合这些测量值对心理和感知负载水平进行了分类,朝着实时自适应的车载界面迈进,该界面是个性化的,该界面是个性化的用户行为和驾驶条件。我们报告多达89%的心理工作负载分类准确性,并提供实时最低侵入的解决方案。
translated by 谷歌翻译
虚拟测试是确保自动驾驶安全性的至关重要的任务,而传感器仿真是该域中的重要任务。大多数当前的激光雷达模拟非常简单,主要用于执行初始测试,而大多数见解是在道路上收集的。在本文中,我们提出了一种轻巧的方法,以实现更现实的激光雷达模拟,该方法从测试驱动器数据中学习了真实传感器的行为,并将其转换为虚拟域。核心思想是将仿真施加到图像到图像翻译问题中。我们将基于PIX2PIX的架构训练两个现实世界数据集,即流行的Kitti数据集和提供RGB和LIDAR图像的Audi自动驾驶数据集。我们将该网络应用于合成渲染,并表明它从真实图像到模拟图像充分概括。该策略使我们可以在我们的合成世界中跳过传感器特异性,昂贵且复杂的LIDAR物理模拟,并避免过度简化和通过干净的合成环境较大的域间隙。
translated by 谷歌翻译
由于评估成本函数的费用(例如,使用计算流体动力学)来确定表面控制所需的性能,因此通常不可能找到流体动力或空气动力表面的最佳设计。此外,由于强加的几何限制,常规的参数化方法和用户偏见,设计空间本身的固有局限性可以限制所选设计空间内设计的{\ IT},而不管传统的优化方法还是较新的,数据驱动的方法使用机器学习的设计算法用于搜索设计空间。我们提出了2条攻击来解决这些困难:我们提出了(1)一种方法,可以使用变形创建设计空间,我们称之为{\ it by-morphing}(dbm); (2)一种优化算法,用于搜索使用新型贝叶斯优化(BO)策略的空间,我们称之为{\ it混合变量,多目标贝叶斯优化}(MixMobo)。我们采用这种形状优化策略来最大程度地提高基本动力学涡轮的功率输出。在同时应用这两种策略,我们证明我们可以创建一个新颖的,几何毫无约束的设计空间和轮毂形状的设计空间,然后通过{\ it最低}成本函数的数量来同时优化它们。我们的框架是多功能的,可以应用于各种流体问题的形状优化。
translated by 谷歌翻译
通过时间(BPTT)的反向传播是训练复发性神经网络(RNN)的事实上的标准,但它是非毒性和非局部性的。实时复发性学习是一种因果替代方法,但效率很低。最近,E-Prop被提出为这些算法的因果,局部和有效的实用替代方法,通过从根本上修剪随时间携带的经常性依赖性来提供确切梯度的近似值。在这里,我们使用详细的符号从BPTT得出RTRL,从而为它们的连接方式带来了直觉和澄清。此外,我们在图片中内部构图E-Prop,使其近似。最后,我们得出了一种特殊案例的算法系列。
translated by 谷歌翻译
事件摄像机是由生物启发的传感器,比传统摄像机具有优势。它们不同步,用微秒的分辨率对场景进行采样,并产生亮度变化。这种非常规的输出引发了新型的计算机视觉方法,以释放相机的潜力。我们解决了SLAM的基于事件的立体3D重建问题。大多数基于事件的立体声方法都试图利用相机跨相机的高时间分辨率和事件同时性,以建立匹配和估计深度。相比之下,我们研究了如何通过融合有效的单眼方法来融合差异空间图像(DSIS)来估计深度。我们开发融合理论,并将其应用于设计产生最先进结果的多相机3D重建算法,正如我们通过与四种基线方法进行比较并在各种可用数据集上进行测试的确认。
translated by 谷歌翻译
我们提出了一种从演示方法(LFD)方法的新颖学习,即示范(DMFD)的可变形操作,以使用状态或图像作为输入(给定的专家演示)来求解可变形的操纵任务。我们的方法以三种不同的方式使用演示,并平衡在线探索环境和使用专家的指导之间进行权衡的权衡,以有效地探索高维空间。我们在一组一维绳索的一组代表性操纵任务上测试DMFD,并从软件套件中的一套二维布和2维布进行测试,每个任务都带有状态和图像观测。对于基于状态的任务,我们的方法超过基线性能高达12.9%,在基于图像的任务上最多超过33.44%,具有可比或更好的随机性。此外,我们创建了两个具有挑战性的环境,用于使用基于图像的观测值折叠2D布,并为其设定性能基准。与仿真相比,我们在现实世界执行过程中归一化性能损失最小的真实机器人(约为6%),我们将DMFD部署为最小。源代码在github.com/uscresl/dmfd上
translated by 谷歌翻译
事件摄像机对场景动态做出响应,并提供了估计运动的优势。遵循最近基于图像的深度学习成就,事件摄像机的光流估计方法急于将基于图像的方法与事件数据相结合。但是,由于它们具有截然不同的属性,因此需要几个改编(数据转换,损失功能等)。我们开发了一种原则性的方法来扩展对比度最大化框架以估算仅事件的光流。我们研究关键要素:如何设计目标函数以防止过度拟合,如何扭曲事件以更好地处理遮挡,以及如何改善与多规模原始事件的收敛性。有了这些关键要素,我们的方法在MVSEC基准的无监督方法中排名第一,并且在DSEC基准上具有竞争力。此外,我们的方法使我们能够在这些基准测试中揭露地面真相流的问题,并在将其转移到无监督的学习环境中时会产生出色的结果。我们的代码可在https://github.com/tub-rip/event_based_optility_flow上找到
translated by 谷歌翻译
该文档的目的是对变压器体系结构和算法的独立,数学精确的概述(*非*结果)。它涵盖了变压器是什么,他们的训练方式,使用的方式,其关键架构组件以及最突出的模型的预览。假定读者熟悉基本的ML术语和更简单的神经网络体系结构,例如MLP。
translated by 谷歌翻译