在最新的联合学习研究(FL)的研究中,广泛采用了客户选择方案来处理沟通效率的问题。但是,从随机选择的非代表性子集汇总的模型更新的较大差异直接减慢了FL收敛性。我们提出了一种新型的基于聚类的客户选择方案,以通过降低方差加速FL收敛。简单而有效的方案旨在改善聚类效果并控制效果波动,因此,以采样的一定代表性生成客户子集。从理论上讲,我们证明了降低方差方案的改进。由于差异的差异,我们还提供了提出方法的更严格的收敛保证。实验结果证实了与替代方案相比,我们计划的效率超出了效率。
translated by 谷歌翻译
随着车身可穿戴感应技术的发展,人类活动的识别已成为一个有吸引力的研究领域。借助舒适的电子质地,传感器可以嵌入衣服中,以便可以长期记录人类运动。但是,一个长期存在的问题是如何处理通过相对于身体运动引入的运动人工制品。令人惊讶的是,最近的经验发现表明,与刚性连接的传感器相比,与固定的传感器相比,布置的传感器实际上可以实现更高的活动识别精度,尤其是在从短时间窗口中预测时。在这项工作中,引入了概率模型,其中通过织物传感记录的运动之间的统计距离增加了这种提高的准确性和呼吸。模型的预测在模拟和真实的人类运动捕获实验中得到了验证,很明显,这种反直觉效应是紧密捕获的。
translated by 谷歌翻译
与大脑变化相关的阿尔茨海默氏病(AD)和轻度认知障碍(MCI)的评估仍然是一项艰巨的任务。最近的研究表明,多模式成像技术的组合可以更好地反映病理特征,并有助于更准确地诊断AD和MCI。在本文中,我们提出了一种新型的基于张量的多模式特征选择和回归方法,用于诊断和生物标志物对正常对照组的AD和MCI鉴定。具体而言,我们利用张量结构来利用多模式数据中固有的高级相关信息,并研究多线性回归模型中的张量级稀疏性。我们使用三种成像方式(VBM- MRI,FDG-PET和AV45-PET)具有疾病严重程度和认知评分的临床参数来分析ADNI数据的方法的实际优势。实验结果表明,我们提出的方法与疾病诊断的最新方法的优越性能以及疾病特异性区域和与模态相关的差异的鉴定。这项工作的代码可在https://github.com/junfish/bios22上公开获得。
translated by 谷歌翻译
随着几个行业正在朝着建模大规模的3D虚拟世界迈进,因此需要根据3D内容的数量,质量和多样性来扩展的内容创建工具的需求变得显而易见。在我们的工作中,我们旨在训练Parterant 3D生成模型,以合成纹理网格,可以通过3D渲染引擎直接消耗,因此立即在下游应用中使用。 3D生成建模的先前工作要么缺少几何细节,因此在它们可以生成的网格拓扑中受到限制,通常不支持纹理,或者在合成过程中使用神经渲染器,这使得它们在常见的3D软件中使用。在这项工作中,我们介绍了GET3D,这是一种生成模型,该模型直接生成具有复杂拓扑,丰富几何细节和高保真纹理的显式纹理3D网格。我们在可区分的表面建模,可区分渲染以及2D生成对抗网络中桥接了最新成功,以从2D图像集合中训练我们的模型。 GET3D能够生成高质量的3D纹理网格,从汽车,椅子,动物,摩托车和人类角色到建筑物,对以前的方法进行了重大改进。
translated by 谷歌翻译
有机搜索包括电子商务公司总流量的很大一部分。扩大公司在有机搜索渠道上接触的一种方法是创建对客户意图的覆盖范围更广泛的着陆页。在本文中,我们提出了一个基于变压器语言模型的有机渠道页面管理系统,旨在提高公司对渠道的总体点击的突出性。我们的系统成功地处理了数百万个新登陆页面的创建和部署过程。我们展示并讨论了最先进的语言表示方法的现实表现,并揭示了我们如何将它们视为最佳的解决方案。
translated by 谷歌翻译
功能磁共振成像(fMRI)的功能连通性网络(FCN)数据越来越多地用于诊断脑疾病。然而,最新的研究用来使用单个脑部分析地图集以一定的空间尺度构建FCN,该空间尺度很大程度上忽略了层次范围内不同空间尺度的功能相互作用。在这项研究中,我们提出了一个新型框架,以对脑部疾病诊断进行多尺度FCN分析。我们首先使用一组定义明确的多尺地图像来计算多尺度FCN。然后,我们利用多尺度地图集中各个区域之间具有生物学意义的大脑分层关系,以跨多个空间尺度进行淋巴结池,即“ Atlas指导的池”。因此,我们提出了一个基于多尺度的层次图形卷积网络(MAHGCN),该网络(MAHGCN)建立在图形卷积和ATLAS引导的池上,以全面地从多尺度FCN中详细提取诊断信息。关于1792名受试者的神经影像数据的实验证明了我们提出的方法在诊断阿尔茨海默氏病(AD),AD的前驱阶段(即轻度认知障碍[MCI])以及自闭症谱系障碍(ASD),,AD的前瞻性阶段(即,轻度认知障碍[MCI]),,精度分别为88.9%,78.6%和72.7%。所有结果都显示出我们提出的方法比其他竞争方法具有显着优势。这项研究不仅证明了使用深度学习增强的静止状态fMRI诊断的可行性,而且还强调,值得探索多尺度脑层次结构中的功能相互作用,并将其整合到深度学习网络体系结构中,以更好地理解有关的神经病理学。脑疾病。
translated by 谷歌翻译
为了解决数学单词问题,人类学生利用达到不同方程解决方案的各种推理逻辑。但是,自动求解器的主流序列到序列方法旨在解码通过人类注释监督的固定溶液方程。在本文中,我们通过利用一组控制代码来指导模型考虑某些推理逻辑并解码从人类参考转换的相应方程式表达式来指导模型来考虑某些推理逻辑并解码相应的方程式表达式来提出一个受控方程生成求解器。经验结果表明,我们的方法普遍提高了单人(MATH23K)和多项(draw1k,hmwp)基准的性能,在具有挑战性的多重未知数据集上,高达13.2%的准确性。
translated by 谷歌翻译
尽管将进化计算整合到增强学习中的新进展,但缺乏高性能平台可赋予合成性和大规模的并行性,这对与异步商业游戏相关的研究和应用造成了非平凡的困难。在这里,我们介绍了Lamarckian-一个开源平台,其支持进化增强学习可扩展到分布式计算资源的支持。为了提高训练速度和数据效率,拉马克人采用了优化的通信方法和异步进化增强学习工作流程。为了满足商业游戏和各种方法对异步界面的需求,Lamarckian量身定制了异步的马尔可夫决策过程界面,并设计了带有脱钩模块的面向对象的软件体系结构。与最先进的RLLIB相比,我们从经验上证明了Lamarckian在基准测试中具有多达6000 CPU核心的独特优势:i)i)在Google足球游戏上运行PPO时,采样效率和训练速度都翻了一番; ii)在乒乓球比赛中运行PBT+PPO时,训练速度的速度快13倍。此外,我们还提出了两种用例:i)如何将拉马克安应用于生成行为多样性游戏AI; ii)Lamarckian如何应用于游戏平衡测试的异步商业游戏。
translated by 谷歌翻译
通过区分真实和合成样品,鉴别器在训练生成对抗网络(GAN)中起着至关重要的作用。尽管实际数据分布保持不变,但由于发电机的发展,合成分布一直变化,从而影响鉴别器的BI分类任务的相应变化。我们认为,对其容量进行即时调整的歧视者可以更好地适应这种时间变化的任务。一项全面的实证研究证实,所提出的培训策略称为Dynamicd,改善了合成性能,而不会产生任何其他计算成本或培训目标。在不同的数据制度下开发了两个容量调整方案,用于培训gan:i)给定足够数量的培训数据,歧视者从逐渐增加的学习能力中受益,ii)ii)当培训数据受到限制时,逐渐减少层宽度的宽度减轻。歧视者的过度问题。在一系列数据集上进行的2D和3D感知图像合成任务的实验证实了我们的动力学的普遍性以及对基准的实质性改进。此外,Dynamicd与其他歧视器改进方法(包括数据增强,正规化器和预训练)具有协同作用,并且在将学习gans合并时会带来连续的性能增长。
translated by 谷歌翻译
多目标多摄像机跟踪(MTMCT)在智能视频分析,监视视频检索和其他应用程序方案中起着重要作用。如今,基于深度学习的MTMCT一直是主流,并且在跟踪准确性和效率方面取得了令人着迷的改进。但是,根据我们的调查,缺乏关注现实应用程序方案的数据集限制了当前基于学习的MTMCT模型的进一步改进。具体而言,基于学习的MTMCT模型通过通用数据集培训通常无法在现实世界应用方案中获得令人满意的结果。在此激励的情况下,本文提出了一个半自动数据注释系统,以促进现实世界中的MTMCT数据集建立。拟议的系统首先采用基于深度学习的单相机轨迹生成方法来自动从监视视频中提取轨迹。随后,该系统在以下手动跨摄像机轨迹匹配过程中提供了建议列表。推荐列表是根据侧面信息生成的,包括相机位置,时间戳关系和背景场景。在实验阶段,广泛的结果进一步证明了拟议系统的效率。
translated by 谷歌翻译