Representing and synthesizing novel views in real-world dynamic scenes from casual monocular videos is a long-standing problem. Existing solutions typically approach dynamic scenes by applying geometry techniques or utilizing temporal information between several adjacent frames without considering the underlying background distribution in the entire scene or the transmittance over the ray dimension, limiting their performance on static and occlusion areas. Our approach $\textbf{D}$istribution-$\textbf{D}$riven neural radiance fields offers high-quality view synthesis and a 3D solution to $\textbf{D}$etach the background from the entire $\textbf{D}$ynamic scene, which is called $\text{D}^4$NeRF. Specifically, it employs a neural representation to capture the scene distribution in the static background and a 6D-input NeRF to represent dynamic objects, respectively. Each ray sample is given an additional occlusion weight to indicate the transmittance lying in the static and dynamic components. We evaluate $\text{D}^4$NeRF on public dynamic scenes and our urban driving scenes acquired from an autonomous-driving dataset. Extensive experiments demonstrate that our approach outperforms previous methods in rendering texture details and motion areas while also producing a clean static background. Our code will be released at https://github.com/Luciferbobo/D4NeRF.
translated by 谷歌翻译
In recent years, vision-centric perception has flourished in various autonomous driving tasks, including 3D detection, semantic map construction, motion forecasting, and depth estimation. Nevertheless, the latency of vision-centric approaches is too high for practical deployment (e.g., most camera-based 3D detectors have a runtime greater than 300ms). To bridge the gap between ideal research and real-world applications, it is necessary to quantify the trade-off between performance and efficiency. Traditionally, autonomous-driving perception benchmarks perform the offline evaluation, neglecting the inference time delay. To mitigate the problem, we propose the Autonomous-driving StreAming Perception (ASAP) benchmark, which is the first benchmark to evaluate the online performance of vision-centric perception in autonomous driving. On the basis of the 2Hz annotated nuScenes dataset, we first propose an annotation-extending pipeline to generate high-frame-rate labels for the 12Hz raw images. Referring to the practical deployment, the Streaming Perception Under constRained-computation (SPUR) evaluation protocol is further constructed, where the 12Hz inputs are utilized for streaming evaluation under the constraints of different computational resources. In the ASAP benchmark, comprehensive experiment results reveal that the model rank alters under different constraints, suggesting that the model latency and computation budget should be considered as design choices to optimize the practical deployment. To facilitate further research, we establish baselines for camera-based streaming 3D detection, which consistently enhance the streaming performance across various hardware. ASAP project page: https://github.com/JeffWang987/ASAP.
translated by 谷歌翻译
We release a new codebase version of the BEVDet, dubbed branch dev2.0. With dev2.0, we propose BEVPoolv2 upgrade the view transformation process from the perspective of engineering optimization, making it free from a huge burden in both calculation and storage aspects. It achieves this by omitting the calculation and preprocessing of the large frustum feature. As a result, it can be processed within 0.82 ms even with a large input resolution of 640x1600, which is 15.1 times the previous fastest implementation. Besides, it is also less cache consumptive when compared with the previous implementation, naturally as it no longer needs to store the large frustum feature. Last but not least, this also makes the deployment to the other backend handy. We offer an example of deployment to the TensorRT backend in branch dev2.0 and show how fast the BEVDet paradigm can be processed on it. Other than BEVPoolv2, we also select and integrate some substantial progress that was proposed in the past year. As an example configuration, BEVDet4D-R50-Depth-CBGS scores 52.3 NDS on the NuScenes validation set and can be processed at a speed of 16.4 FPS with the PyTorch backend. The code has been released to facilitate the study on https://github.com/HuangJunJie2017/BEVDet/tree/dev2.0.
translated by 谷歌翻译
Adding perturbations via utilizing auxiliary gradient information or discarding existing details of the benign images are two common approaches for generating adversarial examples. Though visual imperceptibility is the desired property of adversarial examples, conventional adversarial attacks still generate traceable adversarial perturbations. In this paper, we introduce a novel Adversarial Attack via Invertible Neural Networks (AdvINN) method to produce robust and imperceptible adversarial examples. Specifically, AdvINN fully takes advantage of the information preservation property of Invertible Neural Networks and thereby generates adversarial examples by simultaneously adding class-specific semantic information of the target class and dropping discriminant information of the original class. Extensive experiments on CIFAR-10, CIFAR-100, and ImageNet-1K demonstrate that the proposed AdvINN method can produce less imperceptible adversarial images than the state-of-the-art methods and AdvINN yields more robust adversarial examples with high confidence compared to other adversarial attacks.
translated by 谷歌翻译
许多古典童话,小说和剧本都利用对话来推进故事情节并建立角色。我们提出了第一个研究,以探索机器是否可以理解和产生故事中的对话,这需要捕获不同角色的特征及其之间的关系。为此,我们提出了两项​​新任务,包括蒙版对话生成和对话演讲者的认可,即分别产生对话转弯和预测说话者的指定对话转弯。我们构建了一个新的数据集拨号故事,该数据集由105K中国故事组成,其中包含大量对话,以支持评估。我们通过对拨号故事进行自动和手动评估测试现有模型来显示提出的任务的困难。此外,我们建议学习明确的角色表示,以提高这些任务的绩效。广泛的实验和案例研究表明,我们的方法可以产生更连贯和信息丰富的对话,并获得比强基础更高的说话者识别精度。
translated by 谷歌翻译
非平行文本样式转移是自然语言生成的重要任务。但是,先前的研究集中在令牌或句子级别上,例如句子情绪和形式转移,但在话语水平上忽略了长时间的转移。长文本通常涉及更复杂的作者语言偏好,例如话语结构,而不是句子。在本文中,我们制定了非并行故事作者风格转移的任务,该任务需要将输入故事传输到指定的作者样式的同时,同时维护源语义。为了解决这个问题,我们提出了一个名为StoryTrans的一代模型,该模型利用话语表示捕获源内容信息并将其传输到具有可学习样式嵌入的目标样式中。我们使用额外的培训目标将文学的文学特征与学习的话语表示,以防止模型退化为自动编码器。此外,为了增强内容保存,我们设计了一个面具和填充框架,以将源文本的特定于特定于样式的关键字定为生成。此外,我们分别用中文和英语构建了此任务的新数据集。广泛的实验表明,我们的模型在样式传输和内容保存的总体性能方面优于强大的基线。
translated by 谷歌翻译
与周围摄像机的3D对象检测是自动驾驶的有希望的方向。在本文中,我们提出了Simmod,这是用于解决问题的多相对象检测的简单基线。为了合并多视图信息,并基于以前对单眼3D对象检测的努力,该框架建立在样本的对象建议基础上,并旨在以两阶段的方式工作。首先,我们提取多尺度特征,并在每个单眼图像上生成透视对象建议。其次,多视图提案进行了汇总,然后在DETR3D式中使用多视图和多尺度视觉特征进行迭代完善。精制的提案被端到端解码为检测结果。为了进一步提高性能,我们将辅助分支与提案生成并列以增强特征学习。此外,我们设计了目标过滤和教师强迫的方法,以促进两阶段训练的一致性。我们对Nuscenes的3D对象检测基准进行了广泛的实验,以证明Simmod的有效性并实现新的最新性能。代码将在https://github.com/zhangyp15/simmod上找到。
translated by 谷歌翻译
自我监督的单眼方法可以有效地了解弱纹理表面或反射性对象的深度信息。但是,由于单眼几何建模的固有歧义,深度精度受到限制。相反,由于多视图立体声(MVS)的成功,多帧深度估计方法提高了深度准确性,后者直接使用几何约束。不幸的是,MV经常患有无纹理区域,非斜角表面和移动物体,尤其是在没有已知的相机运动和深度监督的现实世界视频序列中。因此,我们提出了MoveEpth,它利用了单眼线索和速度指导来改善多帧深度学习。与现有的MVS深度和单眼深度之间一致性的方法不同,MoveEpth通过直接解决MV的固有问题来增强多帧深度学习。我们方法的关键是利用单眼深度作为几何优先级来构建MVS成本量,并根据预测的相机速度的指导来调整成本量的深度候选。我们通过学习成本量的不确定性来进一步融合单眼深度和MVS深度,从而导致深度估计多视图几何形状的歧义。广泛的实验表明,移动eptth达到了最先进的性能:与monodepth2和packnet相比,我们的方法相对地将深度准确性提高了20 \%和19.8 \%,而Kitti基准测试的方法则提高了。 MoveEpth还推广到更具挑战性的DDAD基准测试,相对超过7.2 \%。该代码可在https://github.com/jeffwang987/movedepth上获得。
translated by 谷歌翻译
尽管在产生流利的文本方面取得了进步,但现有的预训练模型倾向于在产生诸如故事和新闻之类的叙述时将不连贯的事件序列附加到相关实体上。我们猜想,这些问题是由将实体表示为浅表词的静态嵌入而导致的,同时忽略了对其不断变化的状态建模,即随着文本的展开,即它们所携带的信息。因此,我们将变压器模型扩展到动态执行实体状态更新和叙事生成的句子实现。我们提出了一个对比框架,以在离散空间中学习状态表示,并将其他注意层插入解码器中以更好地利用这些状态。两个叙述数据集的实验表明,与有意义的实体状态的指导相比,我们的模型可以产生更多的连贯和多样化的叙事。
translated by 谷歌翻译
自我监督的单眼深度估计是一种有吸引力的解决方案,不需要难以供应的深度标签进行训练。卷积神经网络(CNN)最近在这项任务中取得了巨大成功。但是,他们的受欢迎的领域有限地限制了现有的网络体系结构,以便在本地进行推理,从而抑制了自我监督范式的有效性。鉴于Vision Transformers(VIT)最近取得的成功,我们提出了Monovit,这是一个崭新的框架,结合了VIT模型支持的全球推理以及自我监督的单眼深度估计的灵活性。通过将普通的卷积与变压器块相结合,我们的模型可以在本地和全球范围内推理,从而在较高的细节和准确性上产生深度预测,从而使MonoVit可以在已建立的Kitti数据集中实现最先进的性能。此外,Monovit证明了其在其他数据集(例如Make3D和Drivingstereo)上的出色概括能力。
translated by 谷歌翻译