深度神经网络拥有的一个重要股权是在以前看不见的数据上对分发检测(OOD)进行强大的能力。在为现实世界应用程序部署模型时,此属性对于安全目的至关重要。最近的研究表明,概率的生成模型可以在这项任务上表现不佳,这令他们寻求估计培训数据的可能性。为了减轻这个问题,我们提出了对变分性自动化器(VAE)的指数倾斜的高斯先前分配。通过此之前,我们能够使用VAE自然分配的负面日志可能性来实现最先进的结果,同时比某些竞争方法快的数量级。我们还表明,我们的模型生产高质量的图像样本,这些样本比标准高斯VAE更清晰。新的先前分配具有非常简单的实现,它使用kullback leibler发散,该kullback leibler发散,该横向leibler发散,该分解比较潜伏向量的长度与球体的半径之间的差异。
translated by 谷歌翻译
最近的工作表明,在Covid-19筛选中使用音频数据的可能性。然而,对监测疾病进展进行了很少的探索,特别是通过音频在Covid-19中恢复。跟踪疾病进展特征和复苏模式可能导致巨大的见解和更及时的治疗或治疗调整,以及在医疗保健系统中更好的资源管理。本研究的主要目的是利用顺序深度学习技术探讨Covid-19监测的纵向音频动力学的潜力,专注于疾病进展预测,特别是恢复趋势预测。我们分析了5天至385天的212个个体中众包呼吸系统数据,以及其自我报告的Covid-19测试结果。我们首先探讨捕获音频生物标志物的纵向动态的好处,用于Covid-19检测。强化性能,产生0.79的AUC-ROC,灵敏度为0.75,特异性为0.70,与不利用纵向动态的方法相比,该方法的有效性。我们进一步检查了预测的疾病进展轨迹,其显示出高一致性与纵向试验结果,测试队列中的0.76中的相关性,测试队列的子集中为0.86,其中12名参与者报告疾病恢复。我们的研究结果表明,通过纵向音频数据监测Covid-19进展在追踪个人疾病进展和恢复方面具有巨大潜力。
translated by 谷歌翻译
本文旨在帮助构建与大规模语言模型(LMS)相关的风险景观。为了促进负责任的创新的进步,需要深入了解这些模型提出的潜在风险。详细分析了广泛的建立和预期的风险,借鉴了计算机科学,语言学和社会科学的多学科专业知识和文学。我们概述了六个具体风险领域:I.歧视,排除和毒性,II。信息危害,III。误导危害,V.恶意用途,V.人机互动危害,vi。自动化,访问和环境危害。第一个领域涉及陈规定型,不公平歧视,排他性规范,有毒语言和LMS社会群体的绩效。第二个重点侧重于私有数据泄漏或LMS正确推断敏感信息的风险。第三次解决贫困,虚假或误导性信息的风险,包括在敏感域中,以及敲门式风险,如共享信息的信任侵蚀。第四次考虑了试图使用LMS造成伤害的行动者的风险。第五部分侧重于用于支持与人类用户互动的会话代理的LLMS特异性的风险,包括不安全使用,操纵或欺骗。第六六探讨了对不同社会群体或社区可能产生不同影响的环境危害,工作自动化和其他挑战的风险。总的来说,我们审查了21个风险。我们讨论了不同风险的起源点和指向潜在的缓解方法。最后,我们讨论在实施减轻的组织职责,以及协作和参与的作用。我们强调了进一步研究的方向,特别是在扩展工具包时,用于评估和评估LMS中的概述风险。
translated by 谷歌翻译
了解小规模对流和风暴形成的细节至关重要,可以准确地代表较大规模的行星动态。目前,大气科学家运营高分辨率,风暴解决模拟,以捕获这些公里规模的天气细节。但是,由于它们包含丰富的信息,所以这些模拟可能会压倒地分析传统方法。本文采用数据驱动方法,并将垂直风速,温度和水蒸气信息共同嵌入为VAE架构的三个“通道”。我们的“多通道VAE”导致比早期的工作分析隔离的垂直速度更具可解释和强大的潜在结构。分析和聚类VAE的潜在空间以完全无人监督的方式识别天气模式及其地理表现。我们的方法表明,VAES可以在分析高维模拟数据和提取危重天气和气候特征方面发挥重要作用。
translated by 谷歌翻译
最近已经提出了与紧急磁化动态的互连磁纳环阵列用于储层计算应用,但是对于它们进行计算有用,必须可以优化其动态响应。在这里,我们使用一种现象学模型来证明可以通过调整使用旋转磁场将数据的缩放和输入速率控制到系统中的超级参数来优化这些储存器。我们使用任务独立的指标来评估每组上的这些超参数的戒指的计算能力,并展示这些指标如何直接关联与口头和书面识别任务中的性能相关联。然后,我们通过扩展储库的输出来包括环阵列磁态的多个并发度量,可以进一步改善这些度量。
translated by 谷歌翻译