我们通过查看在弥漫表面上铸造的对象的阴影来研究个体的生物特征识别信息的问题。我们表明,通过最大似然分析,在代表性的情况下,阴影中的生物特征信息泄漏可以足够用于可靠的身份推断。然后,我们开发了一种基于学习的方法,该方法在实际设置中证明了这种现象,从而利用阴影中的微妙提示是泄漏的来源,而无需任何标记的真实数据。特别是,我们的方法依赖于构建由从每个身份的单个照片获得的3D面模型组成的合成场景。我们以完全无监督的方式将我们从合成数据中学到的知识转移到真实数据中。我们的模型能够很好地概括到真实的域,并且在场景中的几种变体都有坚固的范围。我们报告在具有未知几何形状和遮挡对象的场景中发生的身份分类任务中的高分类精度。
translated by 谷歌翻译
我们研究了数据驱动的深度学习方法的潜力,即从观察它们的混合物中分离两个通信信号。特别是,我们假设一个信号之一的生成过程(称为感兴趣的信号(SOI)),并且对第二个信号的生成过程不了解,称为干扰。单通道源分离问题的这种形式也称为干扰拒绝。我们表明,捕获高分辨率的时间结构(非平稳性),可以准确地同步与SOI和干扰,从而带来了可观的性能增长。有了这个关键的见解,我们提出了一种域信息神经网络(NN)设计,该设计能够改善“现成” NNS和经典检测和干扰拒绝方法,如我们的模拟中所示。我们的发现突出了特定于交流领域知识的关键作用在开发数据驱动的方法方面发挥了作用,这些方法具有前所未有的收益的希望。
translated by 谷歌翻译
我们研究了单通道源分离(SCSS)的问题,并专注于环化信号,这些信号特别适用于各种应用领域。与经典的SCSS方法不同,我们考虑了一个仅可用源的示例而不是模型的设置,从而激发了数据驱动的方法。对于具有基本环化高斯成分的源模型,我们为任何基于模型或数据驱动的分离方法建立了可达到的均方误差(MSE)的下限。我们的分析进一步揭示了最佳分离和相关实施挑战的操作。作为一种计算吸引力的替代方案,我们建议使用U-NET体系结构进行深度学习方法,该方法与最低MSE估计器具有竞争力。我们在模拟中证明,有了合适的域信息架构选择,我们的U-NET方法可以通过大幅减少的计算负担来达到最佳性能。
translated by 谷歌翻译
直接定位(DLOC)方法,该方法使用观察到的数据将源定位在一步过程中的未知位置,通常优于其间接的两步对应物(例如,使用到达的时间差异)。但是,水下声学DLOC方法需要对环境的先验知识,并且计算昂贵,因此很慢。我们建议,据我们所知,这是第一个数据驱动的DLOC方法。受经典和现代最佳模型的DLOC解决方案的启发,并利用了卷积神经网络(CNN)的功能,我们设计了一个基于CNN的整体解决方案。我们的方法包括专门量身定制的输入结构,体系结构,损失功能和渐进培训程序,在更广泛的机器学习背景下具有独立的兴趣。我们证明我们的方法优于有吸引力的替代方案,并且渐近地与基于Oracle的最佳模型解决方案的性能匹配。
translated by 谷歌翻译
如果对准确的预测的置信度不足,则选择性回归允许弃权。通常,通过允许拒绝选项,人们期望回归模型的性能会以减少覆盖范围的成本(即预测较少的样本)的成本提高。但是,正如我们所显示的,在某些情况下,少数子组的性能可以减少,同时我们减少覆盖范围,因此选择性回归可以放大不同敏感亚组之间的差异。在这些差异的推动下,我们提出了新的公平标准,用于选择性回归,要求每个子组的性能在覆盖范围内降低。我们证明,如果特征表示满足充分性标准或为均值和方差进行校准,则与所提出的公平标准相比。此外,我们介绍了两种方法,以减轻子组之间的性能差异:(a)通过在高斯假设下正规化有条件相互信息的上限,以及(b)通过对条件均值和条件方差预测的对比度损失正规。这些方法的有效性已在合成和现实世界数据集上证明。
translated by 谷歌翻译
医学图像分割模型的性能指标用于衡量参考注释和预测之间的一致性。在开发此类模型中,使用了一组通用指标,以使结果更具可比性。但是,公共数据集中的分布与临床实践中遇到的案例之间存在不匹配。许多常见的指标无法衡量这种不匹配的影响,尤其是对于包含不确定,小或空参考注释的临床数据集。因此,可能无法通过此类指标来验证模型在临床上有意义的一致性。评估临床价值的维度包括独立于参考注释量的大小,考虑参考注释的不确定性,体积计和/或位置一致性的奖励以及对空参考注释正确分类的奖励。与普通的公共数据集不同,我们的内部数据集更具代表性。它包含不确定的,小或空的参考注释。我们研究了有关深度学习框架的预测的公开度量指标,以确定哪些设置共同指标可提供有意义的结果。我们将公共基准数据集进行比较而没有不确定,小或空参考注释。该代码将发布。
translated by 谷歌翻译
地震阶段关联将地震到达时间测量连接到其致病来源。有效的关联必须确定离散事件的数量,其位置和起源时间,并且必须将实际到达与测量工件区分开。深度学习采摘者的出现,从紧密重叠的小地震中提供了高率的速度,它激发了重新审视相关问题并使用深度学习方法来解决它。我们已经开发了一个图形神经网络关联器,该协会同时预测源时空定位和离散的源源 - 边界关联可能性。该方法适用于任意几何形状,数百个电台的时变地震网络,并且具有可变噪声和质量的高源和输入选拔速率。我们的图形地震神经解释引擎(Genie)使用一个图来表示站点,另一个图表示空间源区域。 Genie从数据中从数据中学习了关系,使其能够确定可靠的源和源源联想。我们使用Phasenet Deep Learth Learning Phase Phase Picker生成的输入来培训合成数据,并测试来自北加州(NC)地震网络的真实数据的方法。我们成功地重新检测了USGS在2000年$ \ unicode {x2013} $ 2022之间的500天报告中报告的所有事件M> 1的96%。在2017年的100天连续处理间隔中,$ \ unicode {x2013} $ 2018,我们检测到〜4.2x USGS报告的事件数量。我们的新事件的估计值低于USGS目录的完整性幅度,并且位于该地区的活动故障和采石场附近。我们的结果表明,精灵可以在复杂的地震监测条件下有效解决关联问题。
translated by 谷歌翻译
脊柱X射线成像上椎骨的手动注释是昂贵的,并且由于骨骼形状的复杂性和图像质量变化而耗时。在这项研究中,我们通过提出一种称为Vertxnet的集合方法来解决这一挑战,以自动在X射线脊柱图像中分段和标记椎骨。 Vertxnet结合了两个最先进的分割模型,即U-NET和Mask R-CNN,以改善椎骨分割。 Vertxnet的一个主要特征也是由于其在给定的脊柱X射线图像上的掩模R-CNN组件(经过训练,可检测到“参考”椎骨)。在侧面宫颈和腰椎X射线成像的内部数据集上评估了Vertxnet,用于强直性脊柱炎(AS)。我们的结果表明,Vertxnet可以准确标记脊柱X射线(平均骰子为0.9)。它可以用来规避缺乏注释的椎骨而无需进行人类专家审查的情况。此步骤对于通过解决分割的缺乏来研究临床关联至关重要,这是大多数计算成像项目的常见瓶颈。
translated by 谷歌翻译
我们通过专注于两个流行的转移学习方法,$ \ Alpha $ -weighted-ERM和两级eRM,提供了一种基于GIBBS的转移学习算法的泛化能力的信息 - 理论分析。我们的关键结果是使用输出假设和给定源样本的输出假设和目标训练样本之间的条件对称的KL信息进行精确表征泛化行为。我们的结果也可以应用于在这两个上述GIBBS算法上提供新的无分布泛化误差上限。我们的方法是多才多艺的,因为它还表征了渐近误差和渐近制度中这两个GIBBS算法的过度风险,它们分别收敛到$ \ alpha $ -winution-eRM和两级eRM。基于我们的理论结果,我们表明,转移学习的好处可以被视为偏差折衷,源分布引起的偏差和缺乏目标样本引起的差异。我们认为这一观点可以指导实践中转移学习算法的选择。
translated by 谷歌翻译
通过更好地了解多层网络的损失表面,我们可以构建更强大和准确的培训程序。最近发现,独立训练的SGD解决方案可以沿近持续训练损失的一维路径连接。在本文中,我们表明存在模式连接的单纯复合物,形成低损耗的多维歧管,连接许多独立培训的型号。灵感来自这一发现,我们展示了如何有效地建立快速合奏的单纯性复杂,表现优于准确性,校准和对数据集移位的鲁棒性的独立培训的深度集合。值得注意的是,我们的方法只需要几个训练时期来发现低损失单纯乳,从预先接受训练的解决方案开始。代码可在https://github.com/g-benton/loss-surface-simplexes中获得。
translated by 谷歌翻译