卷积自动编码器经过翼型空气动力模拟数据库进行训练,并根据整体准确性和解释性进行评估。目的是预测失速并研究自动编码器区分翼型压力分布的线性和非线性响应的能力,以与攻击角度变化。在对学习基础架构进行敏感性分析之后,我们研究了针对极端压缩率的自动编码器确定的潜在空间,即非常低维的重建。我们还提出了一种使用解码器来生成新的合成翼型几何形状和空气动力溶液的策略,该策略是通过自动编码器学到的潜在表示中的插值和推断。
translated by 谷歌翻译
该技术报告描述了在Robocup SPL(Mario)中计算视觉统计的模块化且可扩展的体系结构,该结构在Robocup 2022的SPL Open Research Challenge期间提出,该挑战在曼谷(泰国)举行。马里奥(Mario)是一个开源的,可用的软件应用程序,其最终目标是为Robocup SPL社区的发展做出贡献。Mario带有一个GUI,该GUI集成了多个机器学习和基于计算机视觉的功能,包括自动摄像机校准,背景减法,同型计算,玩家 +球跟踪和本地化,NAO机器人姿势估计和跌落检测。马里奥(Mario)被排名第一。1在开放研究挑战中。
translated by 谷歌翻译
聊天机器人用于许多应用程序中,例如自动化代理,智能家庭助理,在线游戏中的互动角色等。因此,确保他们不会以不希望的方式行事,对用户提供令人反感或有毒的反应。这并不是一项琐碎的任务,因为最先进的聊天机器人模型是在从互联网公开收集的大型公共数据集上培训的。本文提出了对聊天机器人中毒性的首次大规模测量。我们表明,公开可用的聊天机器人很容易在喂养有毒的查询时提供有毒的反应。更令人担忧的是,一些无毒的查询也会触发有毒反应。然后,我们着手设计和实验攻击,即毒性,该攻击依赖于微调的GPT-2来产生无毒的查询,使聊天机器人以有毒的方式做出反应。我们广泛的实验评估表明,我们的攻击对公共聊天机器人模型有效,并且优于先前工作提出的手动制作的恶意查询。我们还评估了针对毒性的三种防御机制,表明它们要么以影响聊天机器人的效用而降低攻击性能,要么仅有效地减轻了一部分攻击。这强调了对计算机安全和在线安全社区进行更多研究的需求,以确保聊天机器人模型不会伤害其用户。总体而言,我们有信心有毒可以用作审计工具,我们的工作将为设计更有效的聊天机器人安全防御措施铺平道路。
translated by 谷歌翻译
对网络攻击的现代防御越来越依赖于主动的方法,例如,基于过去的事件来预测对手的下一个行动。建立准确的预测模型需要许多组织的知识; las,这需要披露敏感信息,例如网络结构,安全姿势和政策,这些信息通常是不受欢迎的或完全不可能的。在本文中,我们探讨了使用联合学习(FL)预测未来安全事件的可行性。为此,我们介绍了Cerberus,这是一个系统,可以为参与组织的复发神经网络(RNN)模型进行协作培训。直觉是,FL可能会在非私有方法之间提供中间地面,在非私有方法中,训练数据在中央服务器上合并,而仅训练本地模型的较低性替代方案。我们将Cerberus实例化在从一家大型安全公司的入侵预防产品中获得的数据集上,并评估其有关实用程序,鲁棒性和隐私性,以及参与者如何从系统中贡献和受益。总体而言,我们的工作阐明了将FL执行此任务的积极方面和挑战,并为部署联合方法以进行预测安全铺平了道路。
translated by 谷歌翻译
事实核对是打击在线错误信息方面的有效解决方案之一。但是,传统的事实检查是一个需要稀缺专家人力资源的过程,因此由于要检查新内容的持续流动,因此在社交媒体上并不能很好地扩展。已经提出了基于众包的方法来应对这一挑战,因为它们可以以较小的成本进行扩展,但是尽管它们证明是可行的,但一直在受控环境中进行研究。在这项工作中,我们研究了在BirdWatch计划的Twitter启动的,在实践中部署的众包事实检查的第一个大规模努力。我们的分析表明,在某些情况下,众包可能是一种有效的事实检查策略,甚至可以与人类专家获得的结果相媲美,但不会导致其他人的一致,可行的结果。我们处理了BirdWatch计划验证的11.9k推文,并报告了i)人群和专家如何选择内容的内容的差异,ii)ii)人群和专家如何将不同的资源检索到事实检查,以及III )与专家检查员相比,人群在事实检查可伸缩性和效率方面所显示的优势。
translated by 谷歌翻译
ROS 2迅速成为机器人行业的标准。基于DDS作为其默认通信中间件并用于安全至关重要的场景中,将安全性添加到机器人和ROS计算图中越来越引起人们的关注。目前的工作介绍了SROS2,这是一系列开发人员工具和库,可促进ROS 2图添加安全性。为了关注SROS2中以可用性为中心的方法,我们提出了一种在遵循DevSecops模型时系统地保护图形的方法。我们还通过提出了一项应用程序案例研究来证明使用安全工具的使用,该案例研究考虑使用Puctor Navigation2和SLAM Toolbox Stacks在Turtlebot3机器人中应用的图形。我们分析了SROS2的当前功能,并讨论了这些缺点,从而为未来的贡献和扩展提供了见解。最终,我们将SROS2呈现为ROS 2的可用安全工具,并认为如果没有可用性,机器人技术的安全性将受到极大的损害。
translated by 谷歌翻译
最近在语义Web本体论的背景下研究了受控查询评估(CQE)。 CQE的目标是隐藏一些查询答案,以防止外部用户推断机密信息。通常,存在多种隐藏答案的多种无与伦比的方法,并且先前的CQE方法提前选择了哪些答案是可见的,哪些是不可见的。相反,在本文中,我们研究了一种动态CQE方法,即,我们建议根据对先前的评估更改当前查询的答案。我们的目标是最大程度地合作,除了能够保护机密数据之外,该系统除了能够保护机密数据,这意味着它可以肯定地回答了尽可能多的查询;它通过尽可能延迟答案修改来实现这一目标。我们还表明,我们无法通过静态方法(独立于查询历史记录)在直觉上模拟这种行为。有趣的是,对于通过拒绝表达的OWL 2 QL本体和策略,我们的语义下的查询评估是一阶重写,因此在数据复杂性中是AC0。这为开发实用算法铺平了道路,我们在本文中也初步讨论了这一算法。
translated by 谷歌翻译
随着我们远离数据,预测不确定性应该增加,因为各种各样的解释与鲜为人知的信息一致。我们引入了远距离感知的先验(DAP)校准,这是一种纠正训练域之外贝叶斯深度学习模型过度自信的方法。我们将DAPS定义为模型参数的先验分布,该模型参数取决于输入,通过其与训练集的距离度量。DAP校准对后推理方法不可知,可以作为后处理步骤进行。我们证明了其在各种分类和回归问题中对几个基线的有效性,包括旨在测试远离数据的预测分布质量的基准。
translated by 谷歌翻译
在这篇扩展的抽象论文中,我们解决了因果机学习模型中的可解释性和针对性正则化的问题。特别是,我们专注于在观察到的混杂因素下估计单个因果/治疗效果的问题,这些问题可以控制并适应治疗对感兴趣结果的影响。针对因果环境调整的Black-Box ML模型在此任务中通常表现良好,但是它们缺乏可解释的输出,无法识别治疗异质性及其功能关系的主要驱动因素。我们提出了一种新型的深层反事实学习结构,用于估计可以同时进行的个人治疗效果:i)传达有针对性的正则化,并产生围绕感兴趣量的量化不确定性(即条件平均治疗效应); ii)解开协变量的基线预后和调节作用,并输出可解释的分数功能,描述了它们与结果的关系。最后,我们通过简单的模拟实验来证明该方法的使用。
translated by 谷歌翻译
嵌入大而冗余的数据,例如图像或文本,在较低维空间的层次结构中是表示方法的关键特征之一,如今,这些特征是一旦相信困难或不可能的问题,这些方法就可以为问题提供最新的解决方案解决。在这项工作中,在具有强大元回味的情节扭转中,我们展示了受过训练的深层模型与它们优化的数据一样多余,因此如何使用深度学习模型来嵌入深度学习模型。特别是,我们表明可以使用表示形式学习来学习经过训练的深层模型的固定大小,低维的嵌入空间,并且可以通过插值或优化来探索此类空间,以实现现成的模型。我们发现,可以学习相同体系结构和多个体系结构的多个实例的嵌入空间。我们解决了信号的图像分类和神经表示,表明如何学习我们的嵌入空间,以分别捕获性能和3D形状的概念。在多架结构的环境中,我们还展示了仅在架构子集中训练的嵌入方式如何才能学会生成已经训练的架构实例,从未在培训时看到实例化。
translated by 谷歌翻译