学习遥感(RS)图像之间的相似性形成基于内容的RS图像检索(CBIR)的基础。最近,将图像的语义相似性映射到嵌入(度量标准)空间的深度度量学习方法已经发现非常流行。学习公制空间的常见方法依赖于将与作为锚称为锚的参考图像的类似(正)和不同(负)图像的三胞胎的选择。选择三胞胎是一个难以为多标签RS CBIR的困难任务,其中每个训练图像由多个类标签注释。为了解决这个问题,在本文中,我们提出了一种在为多标签RS CBIR问题定义的深神经网络(DNN)的框架中提出了一种新颖的三联样品采样方法。该方法基于两个主要步骤选择一小部分最多代表性和信息性三元组。在第一步中,使用迭代算法从当前迷你批量选择在嵌入空间中彼此多样化的一组锚。在第二步中,通过基于新颖的策略评估彼此之间的图像的相关性,硬度和多样性来选择不同的正面和负图像。在两个多标签基准档案上获得的实验结果表明,在DNN的上下文中选择最具信息丰富和代表性的三胞胎,导致:i)降低DNN训练阶段的计算复杂性,而性能没有任何显着损失; ii)由于信息性三元组允许快速收敛,因此学习速度的增加。所提出的方法的代码在https://git.tu-berlin.de/rsim/image-reetrieval-from-tropls上公开使用。
translated by 谷歌翻译