胎儿超声(US)中胎盘的自动分割由于(i)(i)胎盘外观的高度多样性而具有挑战性我们禁止在妊娠晚期进行整个胎盘评估的观点。在这项工作中,我们通过多任务学习方法解决了这三个挑战,该方法结合了单个卷积神经网络中胎盘位置(例如,前,后部)和语义胎盘分段的分类。通过分类任务,模型可以从更大,更多样化的数据集中学习,同时在有限的训练集条件下提高分割任务的准确性。通过这种方法,我们研究了多个评估者的注释的变异性,并表明我们的自动分割(前胎盘的骰子为0.86,后胎盘的骰子为0.83),与观察者内和观察者间的变异性相比,我们的自动段性能达到了人级的性能。最后,我们的方法可以使用由三个阶段组成的多视图US采集管道提供整个胎盘分割:多探针图像采集,图像融合和图像分段。这会导致对较大结构(例如胎盘中的胎盘)的高质量分割,其图像伪像降低,这超出了单个探针的视野。
translated by 谷歌翻译
人们对连续可穿戴生命体征传感器的兴趣越来越大,用于在家中远程监测患者。这些监视器通常与警报系统耦合,当生命体征测量值落在预定义的正常范围之外时,它会触发。生命体征的趋势(例如心率提高)通常表明健康状况恶化,但很少被纳入警报系统中。在这项工作中,我们提出了一种新型的离群检测算法,以识别这种异常生命体征趋势。我们引入了一种基于距离的措施,以比较生命体征轨迹。对于我们数据集中的每个患者,我们将生命体征时间序列分为180分钟的非重叠时期。然后,我们使用动态时间扭曲距离计算了所有时期对之间的距离。每个时期的特征都以其平均成对距离(平均链路距离)到所有其他时期,其距离为较大的距离。我们将此方法应用于1561多个患者小时的飞行员数据集,这些数据集是从最近在Covid-19收缩后出院的8例患者的1561个患者小时。我们表明,离群值时期与后来入院的患者相对应。我们还描述了一个这样的患者如何从正常异常转变为异常。
translated by 谷歌翻译
对抗贴片是旨在欺骗其他表现良好的基于​​神经网络的计算机视觉模型的图像。尽管这些攻击最初是通过数字方式构想和研究的,但由于图像的原始像素值受到干扰,但最近的工作表明,这些攻击可以成功地转移到物理世界中。可以通过打印补丁并将其添加到新捕获的图像或视频素材的场景中来实现。在这项工作中,我们进一步测试了在更具挑战性的条件下物理世界中对抗斑块攻击的功效。我们考虑通过空中或卫星摄像机获得的高架图像训练的对象检测模型,并测试插入沙漠环境场景中的物理对抗斑块。我们的主要发现是,在这些条件下成功实施对抗贴片攻击要比在先前考虑的条件下更难。这对AI安全具有重要意义,因为可能被夸大了对抗性例子所带来的现实世界威胁。
translated by 谷歌翻译
为了使软机器人在以人为本的环境中有效工作,他们需要能够根据(本体感受)传感器估算其状态和外部相互作用。估计干扰使软机器人可以执行理想的力控制。即使在刚性操纵器的情况下,最终效应器的力估计也被视为一个非平凡的问题。实际上,其他当前应对这一挑战的方法也存在防止其一般应用的缺点。它们通常基于简化的软动力学模型,例如依赖于零件的恒定曲率(PCC)近似值或匹配的刚体模型的模型,这些模型并不代表该问题的细节。因此,无法构建复杂的人类机器人互动所需的应用。有限元方法(FEM)允许以更通用的方式预测软机器人动力学。在这里,使用框架沙发的软机器人建模功能,我们构建了一个详细的FEM模型,该模型由多段的软连续机器人手臂组成,该机器人由合规的可变形材料和纤维增强的压力驱动室组成,并具有用于提供方向输出的传感器的模型。该模型用于为操纵器建立状态观察者。校准模型参数以使用物理实验匹配手动制造过程的缺陷。然后,我们解决了二次编程逆动力学问题,以计算解释姿势误差的外力的组成部分。我们的实验显示,平均力估计误差约为1.2%。由于提出的方法是通用的,因此这些结果令人鼓舞,该任务是构建可以在以人为中心的环境中部署的复杂,反应性,基于传感器的行为的软机器人。
translated by 谷歌翻译
我们对解决几个自然学习问题的一通流算法所需的记忆量给出了下限。在$ \ {0,1 \}^d $中的示例的环境中,可以使用$ \ kappa $ bits对最佳分类器进行编码,我们表明,使用近距离数量的示例学习的算法,$ \ tilde o(\ kappa)$,必须使用$ \ tilde \ omega(d \ kappa)$空间。我们的空间界限与问题自然参数化的环境空间的维度相匹配,即使在示例和最终分类器的大小上是二次的。例如,在$ d $ -sparse线性分类器的设置中,$ \ kappa = \ theta(d \ log d)$,我们的空间下限是$ \ tilde \ omega(d^^^ 2)$。我们的边界与流长$ n $优雅地降级,通常具有$ \ tilde \ omega \ left(d \ kappa \ cdot \ frac \ frac {\ kappa} {n} {n} \ right)$。 $ \ omega(d \ kappa)$的形式的界限以学习奇偶校验和有限字段定义的其他问题而闻名。在狭窄的样本量范围内适用的边界也以线性回归而闻名。对于最近学习应用程序中常见的类型的问题,我们的第一个范围是适用于各种输入尺寸的问题。
translated by 谷歌翻译
我们考虑使用梯度下降来最大程度地减少$ f(x)= \ phi(xx^{t})$在$ n \ times r $因件矩阵$ x $上,其中$ \ phi是一种基础平稳凸成本函数定义了$ n \ times n $矩阵。虽然只能在合理的时间内发现只有二阶固定点$ x $,但如果$ x $的排名不足,则其排名不足证明其是全球最佳的。这种认证全球最优性的方式必然需要当前迭代$ x $的搜索等级$ r $,以相对于级别$ r^{\ star} $过度参数化。不幸的是,过度参数显着减慢了梯度下降的收敛性,从$ r = r = r = r^{\ star} $的线性速率到$ r> r> r> r> r^{\ star} $,即使$ \ phi $是$ \ phi $强烈凸。在本文中,我们提出了一项廉价的预处理,该预处理恢复了过度参数化的情况下梯度下降回到线性的收敛速率,同时也使在全局最小化器$ x^{\ star} $中可能不良条件变得不可知。
translated by 谷歌翻译
增强学习的数据毒害历史上专注于一般性绩效退化,目标攻击已经通过扰动取得了成功,涉及控制受害者的政策和奖励。我们介绍了一个阴险的中毒攻误,用于加强学习,这只会在特定目标状态下引起代理人不端行为 - 所有的,而且在最小地修改小数一小部分的培训观察,而不假设任何控制政策或奖励。我们通过调整最近的技术,梯度对准来实现这一目标,以加强学习。我们测试我们的方法,并在两个Atari游戏中展示了不同困难的成功。
translated by 谷歌翻译
Monte Carlo树搜索(MCT)是一种用于搜索最佳决策的采样最佳方法。 MCTS的受欢迎程度是基于其挑战基于两位玩家的游戏的非凡结果,这是一个比国际象棋更难的游戏,直到最近被认为是人工智能方法的不可行。 MCTS的成功大大取决于树的构建方式,选择过程在这方面发挥着重要作用。证明是可靠的一个特定选择机制是基于树的上部置信度,通常称为UCT。通过考虑存储在MCT的统计树中的值,UCT试图平衡探索和利用。但是,MCTS UCT的一些调整是必要的工作。在这项工作中,我们使用进化算法(EAS)来发展数学表达式,以替代UCT数学表达式。我们比较了我们提出的方法,称为MCTS(ES-MCTS)中的演化策略,对MCTS UCT的五种变体,算法的三种变体,算法中的算法,以及卡尔卡松游戏中的随机控制器。我们还使用所提出的基于EA的控制器的变体,被称为MCTS的ES部分集成。我们展示了ES-MCTS控制器的方式如何优于所有这10个智能控制器,包括强大的MCTS UCT控制器。
translated by 谷歌翻译
最近实现了更准确的短期预测的数据驱动的空气质量预测。尽管取得了成功,但大多数目前的数据驱动解决方案都缺乏适当的模型不确定性的量化,以传达信任预测的程度。最近,在概率深度学习中已经制定了几种估计不确定性的实用工具。但是,在空气质量预测领域的域中没有经验应用和广泛的比较这些工具。因此,这项工作在空气质量预测的真实环境中应用了最先进的不确定性量化。通过广泛的实验,我们描述了培训概率模型,并根据经验性能,信心可靠性,置信度估计和实际适用性评估其预测性不确定性。我们还使用空气质量数据中固有的“自由”对抗培训和利用时间和空间相关性提出改善这些模型。我们的实验表明,所提出的模型比以前的工作更好地在量化数据驱动空气质量预测中的不确定性方面表现出。总体而言,贝叶斯神经网络提供了更可靠的不确定性估计,但可能挑战实施和规模。其他可扩展方法,如深合奏,蒙特卡罗(MC)辍学和随机重量平均-Gaussian(SWAG)可以执行良好,如果正确应用,但具有不同的权衡和性能度量的轻微变化。最后,我们的结果表明了不确定性估计的实际影响,并证明了,实际上,概率模型更适合提出知情决策。代码和数据集可用于\ url {https:/github.com/abdulmajid-murad/deep_probabilistic_forecast}
translated by 谷歌翻译
对于人工智能在生物学和药物中产生更大的影响,这是一个至关重要的是,建议都是准确和透明的。在其他域中,已经显示了关于知识图表的多跳推理的神经统计学方法,以产生透明的解释。然而,缺乏研究将其应用于复杂的生物医学数据集和问题。在本文中,探讨了药物发现的方法,以利用其适用性的稳定结论。我们首次系统地将其应用于多种生物医学数据集和具有公平基准比较的推荐任务。发现该方法以平均水平的21.7%优于21.7%,同时产生新颖,生物学相关的解释。
translated by 谷歌翻译