本文介绍了一种用于开发面向控制的建筑物的散热模型的数据驱动建模方法。这些型号是通过降低能耗成本的目标而开发的,同时控制建筑物的室内温度,在所需的舒适度限制内。结合白/灰盒物理模型的可解释性和神经网络的表现力,我们提出了一种物理知识的神经网络方法,用于这种建模任务。除了测量的数据和构建参数之外,我们将通过管理这些建筑物的热行为的底层物理编码神经网络。因此,实现了由物理学引导的模型,有助于建模室温和功耗的时间演化以及隐藏状态,即建筑物热质量的温度。这项工作的主要研究贡献是:(1)我们提出了两种物理学的变种信息,为机构的控制定向热建模任务提供了通知的神经网络架构,(2)我们展示这些架构是数据效率的,需要更少培训数据与传统的非物理知识的神经网络相比,(3)我们表明这些架构比传统的神经网络实现更准确的预测,用于更长的预测视野。我们使用模拟和实际字数据测试所提出的架构的预测性能,以演示(2)和(3),并显示所提出的物理知识的神经网络架构可以用于该控制导向的建模问题。
translated by 谷歌翻译