预测中小型企业(SME)的破产风险(SME)是金融机构在做出贷款时的重要一步。但是,金融和AI研究领域的现有研究倾向于仅考虑企业内风险或传染性风险,而忽略了它们的相互作用和组合效应。这项研究首次考虑了在破产预测中的风险及其共同影响。具体而言,我们首先根据其风险内学习的统计学意义企业风险指标提出了企业内风险编码器。然后,我们根据企业关系信息从企业知识图中提出了一个企业传染风险编码器,以进行其传染风险嵌入。特别是,传染风险编码器既包括新提出的高图神经网络和异质图神经网络,这些神经网络可以在两个不同方面建模传播风险,即基于超系统的常见风险因素和直接扩散的风险。为了评估该模型,我们收集了SME上的现实世界多源数据数据,并构建了一个名为SMESD的新型基准数据集。我们提供对数据集的开放访问权限,该数据集有望进一步促进财务风险分析的研究。针对十二个最先进的基线的SMESD实验证明了拟议模型对破产预测的有效性。
translated by 谷歌翻译
股票运动预测(SMP)旨在预测上市公司的股份量股份,由于金融市场的挥发性,这是一个具有挑战性的任务。最近的财务研究表明,动量溢出效应在股票波动中发挥着重要作用。然而,以前的研究通常只学习相关公司之间的简单连接信息,这不可避免地未能模仿真实金融市场中上市公司的复杂关系。为了解决这个问题,我们首先建立一个更全面的市场知识图(MKG),其中包含有限的公司,包括上市公司及其相关的高管,以及包括明确关系和隐性关系的混合关系。之后,我们提出了一种新颖的双重关注网络,以了解基于构造的MKG用于库存预测的势头溢出信号。对九个SOTA基线构建数据集的实证实验表明,所提出的丹林公司能够改善与构造的MKG的库存预测。
translated by 谷歌翻译
双类型的异构图形应用于许多真实情景。然而,以前的异构图形学习研究通常忽略这种异构图中的双键入实体之间的复杂相互作用。为了解决这个问题,在本文中,我们提出了一种新的双重分层关注网络(DHAN),以了解与类内和级别的分层关注网络的双键入异构图中的综合节点表示。具体地,课堂上的注意力旨在从相同类型的邻居中学习节点表示,而级别的关注能够从其不同类型的邻居聚合节点表示。因此,双重关注操作使DHAN不仅能够充分地利用节点帧内邻近信息,而且可以在双键入的异构图中提供帧间相邻信息。关于针对最先进的各种任务的实验结果充分证实了DHAN在学习节点的学习节点综合陈述的能力
translated by 谷歌翻译
自行车分享系统(BSSS)在全球越来越受欢迎,并引起了广泛的研究兴趣。本文研究了BSSS中的需求预测问题。空间和时间特征对于BSSS的需求预测至关重要,但提取了时尚动态的需求是挑战性的。另一个挑战是捕捉时空动力学和外部因素之间的关系,例如天气,一周和一天时间。为了解决这些挑战,我们提出了一个名为MSTF-Net的多个时空融合网络。 MSTF-Net由多个时空块组成:3D卷积网络(3D-CNN)块,Eidetic 3D卷积长短短期存储网络(E3D-LSTM)块,以及完全连接的(FC)块。具体地,3D-CNN嵌段突出显示在每个片段中提取短期时空依赖(即,亲近,期间和趋势); E3D-LSTM块进一步提取对所有碎片的长期时空依赖; FC块提取外部因素的非线性相关性。最后,融合E3D-LSTM和FC块的潜在表示以获得最终预测。对于两个现实世界数据集,显示MSTF-Net优于七种最先进的模型。
translated by 谷歌翻译
标记数据的中心性和多样性对半监督学习(SSL)的性能非常有影响,但是大多数SSL模型随机选择标记的数据。迄今为止,如何保证标记数据的中心性和多样性几乎没有得到研究的关注。已经观察到最佳的领先森林(OLF)具有揭示类别开发SSL模型的类别的差异演变的优势。我们对这项研究的关键直觉是学习一个基于OLF结构识别的少量最稳定和最不同的数据,以学习一个核的大幅度度量。提出了一个优化问题以实现这一目标。同样,对于OLF,多个局部指标学习促进了解决SSL中多模式和混合模式问题的促进。归因于这种新颖的设计,与基线方法相比,基于OLF的SSL模型的准确性和性能稳定性在没有牺牲太多效率的情况下得到了显着改善。实验研究表明,与最先进的图形SSL方法相比,提出的方法可以鼓励精度和运行时间。代码已在https://github.com/alanxuji/delala上提供。
translated by 谷歌翻译
点云过滤和正常估计是3D场中的两个基本研究问题。现有方法通常会单独执行正常的估计和过滤,并且经常表现出对噪声和/或无法保留尖锐几何特征(例如角和边缘)的敏感性。在本文中,我们提出了一种新颖的深度学习方法,以共同估计正态和过滤点云。我们首先引入了一个基于3D补丁的对比学习框架,并以噪声损坏为增强,以训练能够生成点云斑块的忠实表示的功能编码器,同时保持噪音的强大功能。这些表示由简单的回归网络消耗,并通过新的关节损失进行监督,同时估算用于过滤贴片中心的点正常和位移。实验结果表明,我们的方法同时支持这两个任务,并保留尖锐的功能和细节。通常,它在这两个任务上都胜过最先进的技术。
translated by 谷歌翻译
由于受试者辍学或扫描失败,在纵向研究中不可避免地扫描是不可避免的。在本文中,我们提出了一个深度学习框架,以预测获得的扫描中缺少扫描,从而迎合纵向婴儿研究。由于快速的对比和结构变化,特别是在生命的第一年,对婴儿脑MRI的预测具有挑战性。我们引入了值得信赖的变质生成对抗网络(MGAN),用于将婴儿脑MRI从一个时间点转换为另一个时间点。MGAN具有三个关键功能:(i)图像翻译利用空间和频率信息以进行详细信息提供映射;(ii)将注意力集中在具有挑战性地区的质量指导学习策略。(iii)多尺度杂种损失函数,可改善组织对比度和结构细节的翻译。实验结果表明,MGAN通过准确预测对比度和解剖学细节来优于现有的gan。
translated by 谷歌翻译
强化学习(RL)技术在许多具有挑战性的任务中引起了极大的关注,但是当应用于现实世界问题时,它们的性能急剧恶化。已经提出了各种方法,例如域随机化,以通过不同的环境设置下的培训代理来应对这种情况,因此在部署过程中可以将它们推广到不同的环境。但是,它们通常不包含与代理人正确相互作用的潜在环境因素信息,因此在面对周围环境变化时可能会过于保守。在本文中,我们首先将适应RL中的环境动态的任务形式化为使用上下文Markov决策过程(CMDP)的概括问题。然后,我们在上下文RL(AACC)中提出了不对称的参与者 - 作为处理此类概括任务的端到端参与者的方法。我们在一系列模拟环境中证明了AACC对现有基线的性能的基本改进。
translated by 谷歌翻译
最近,低精确的深度学习加速器(DLA)由于其在芯片区域和能源消耗方面的优势而变得流行,但是这些DLA上的低精确量化模型导致严重的准确性降解。达到高精度和高效推断的一种方法是在低精度DLA上部署高精度神经网络,这很少被研究。在本文中,我们提出了平行的低精确量化(PALQUANT)方法,该方法通过从头开始学习并行低精度表示来近似高精度计算。此外,我们提出了一个新型的循环洗牌模块,以增强平行低精度组之间的跨组信息通信。广泛的实验表明,PALQUANT的精度和推理速度既优于最先进的量化方法,例如,对于RESNET-18网络量化,PALQUANT可以获得0.52 \%的准确性和1.78 $ \ times $ speedup同时获得在最先进的2位加速器上的4位反片机上。代码可在\ url {https://github.com/huqinghao/palquant}中获得。
translated by 谷歌翻译
联合学习(FL)是一个新兴的隐私机器学习范式(ML)。 FL的一种重要类型是Cross-Silo FL,它使少数组织能够通过在本地保密数据并在中央参数服务器上汇总权重来合作训练共享模型。但是,在实践中,中央服务器可能容易受到恶意攻击或软件故障的影响。为了解决这个问题,在本文中,我们提出了DEFL,这是一个新颖的分散体重聚集框架,用于交叉silo fl。 DEFL通过在每个参与节点上汇总权重来消除中央服务器,并且仅在所有节点之间维护并同步当前的训练回合的权重。我们使用Multi-Krum来启用诚实节点的正确权重,并使用HotStuff来确保训练循环数和权重的一致性。此外,我们从理论上分析了DEFL的拜占庭式容错,收敛性和复杂性。我们对两个广泛的公共数据集进行了广泛的实验,即CIFAR-10和Sentiment140,以评估DEFL的性能。结果表明,与最先进的分散FL方法相比,DEFL可以防御通用的威胁模型,并以最小的精度损失损失降低了100倍的存储空间和最多减少网络开销的12倍。
translated by 谷歌翻译