假新闻的广泛传播越来越威胁到个人和社会。在单个领域(例如政治)上自动假新闻发现已做出了巨大的努力。但是,相关性通常存在于多个新闻领域,因此有望同时检测多个域的假新闻。基于我们的分析,我们在多域假新闻检测中提出了两个挑战:1)域转移,是由域,情感,样式等领域之间的差异引起的。世界分类仅输出一个单个领域标签,而不管新闻文章的主题多样性如何。在本文中,我们提出了一个记忆引导的多视图多域假新闻检测框架(M $^3 $ fend),以应对这两个挑战。我们从多视图的角度对新闻作品进行建模,包括语义,情感和风格。具体而言,我们建议一个域存储库来丰富域信息,该信息可以根据可见的新闻和模型域特征来发现潜在的域标签。然后,以丰富的域信息为输入,域适配器可以从各个域中的新闻的多个视图中适应汇总歧视性信息。对英语和中文数据集进行的大量离线实验证明了M $^3 $ fend的有效性,在线测试在实践中验证了其优势。我们的代码可在https://github.com/ictmcg/m3fend上找到。
translated by 谷歌翻译
大多数真实的知识图(kg)远非完整和全面。这个问题激发了预测最合理的缺失事实以完成给定的kg,即知识图完成(KGC)。但是,现有的kgc方法遇到了两个主要问题,1)虚假负面问题,即,采样的负面培训实例可能包括潜在的真实事实; 2)数据稀疏问题,即真实事实仅解释了所有可能事实的一小部分。为此,我们提出了针对KGC的对抗数据增强(PUDA)的积极未标记的学习。特别是,PUDA针对KGC任务量身定制了正标记的风险估计器,以解决虚假的负面问题。此外,为了解决数据稀疏问题,PUDA通过在积极的无标记的Minimax游戏中统一对抗性培训和积极的未标记学习来实现数据增强策略。现实世界基准数据集的广泛实验结果证明了我们提出的方法的有效性和兼容性。
translated by 谷歌翻译
在以前的作品中广泛讨论了句子语义相似性的原始伯特的表现不佳。我们发现不满意的性能主要是由于静态令牌嵌入偏差和无效的伯特层,而不是姓氏的高余弦相似性。为此,我们提出了一个迅速的句子嵌入方法,可以减少令牌嵌入偏差,使原始伯特层更有效。通过将句子嵌入式任务重新塑造为填充空白问题,我们的方法显着提高了原始伯特的性能。我们讨论了两个提示符,表示基于及时的句子嵌入的三个提示搜索方法。此外,我们提出了一种通过模板去噪技术的新型无监督培训目标,这大大缩短了监督和无人监督的环境之间的性能差距。对于实验,我们评估我们在非微调和微调的设置上的方法。即使是非微调方法也可以优于STS任务上的无监督服务器等微调的方法。我们的微调方法在无监督和监督设置中优于最先进的方法SIMCSE。与SIMCSE相比,我们分别在无监督环境下实现了2.29和2.58点的伯特和罗伯塔的改进。
translated by 谷歌翻译
股票运动预测(SMP)旨在预测上市公司的股份量股份,由于金融市场的挥发性,这是一个具有挑战性的任务。最近的财务研究表明,动量溢出效应在股票波动中发挥着重要作用。然而,以前的研究通常只学习相关公司之间的简单连接信息,这不可避免地未能模仿真实金融市场中上市公司的复杂关系。为了解决这个问题,我们首先建立一个更全面的市场知识图(MKG),其中包含有限的公司,包括上市公司及其相关的高管,以及包括明确关系和隐性关系的混合关系。之后,我们提出了一种新颖的双重关注网络,以了解基于构造的MKG用于库存预测的势头溢出信号。对九个SOTA基线构建数据集的实证实验表明,所提出的丹林公司能够改善与构造的MKG的库存预测。
translated by 谷歌翻译
随着电子商务行业的爆炸性增长,检测现实世界应用中的在线交易欺诈对电子商务平台的发展越来越重要。用户的顺序行为历史提供有用的信息,以区分从常规支付的欺诈性付款。最近,已经提出了一些方法来解决基于序列的欺诈检测问题。然而,这些方法通常遭受两个问题:预测结果难以解释,并且对行为的内部信息的利用不足。为了解决上述两个问题,我们提出了一个分层可解释的网络(母鸡)来模拟用户的行为序列,这不仅可以提高欺诈检测的性能,还可以使推理过程解释。同时,随着电子商务业务扩展到新域名,例如新的国家或新市场,在欺诈检测系统中建模用户行为的一个主要问题是数据收集的限制,例如,非常少的数据/标签。因此,在本文中,我们进一步提出了一种转移框架来解决跨域欺诈检测问题,其旨在从现有域(源域)的知识传输足够的域(源域),以提高新域中的性能(目标域)。我们所提出的方法是一般的转移框架,不仅可以应用于母鸡而且可以在嵌入和MLP范例中应用各种现有模型。基于90个转移任务实验,我们还表明,我们的转移框架不仅可以促进母鸡的跨域欺诈检测任务,而且对于各种现有模型也是普遍的和可扩展的。
translated by 谷歌翻译
虽然无监督的域适应(UDA)算法,即,近年来只有来自源域的标记数据,大多数算法和理论结果侧重于单源无监督域适应(SUDA)。然而,在实际情况下,标记的数据通常可以从多个不同的源收集,并且它们可能不仅不同于目标域而且彼此不同。因此,来自多个源的域适配器不应以相同的方式进行建模。最近基于深度学习的多源无监督域适应(Muda)算法专注于通过在通用特征空间中的所有源极和目标域的分布对齐来提取所有域的公共域不变表示。但是,往往很难提取Muda中所有域的相同域不变表示。此外,这些方法匹配分布而不考虑类之间的域特定的决策边界。为了解决这些问题,我们提出了一个新的框架,具有两个对准阶段的Muda,它不仅将每对源和目标域的分布对齐,而且还通过利用域特定的分类器的输出对准决策边界。广泛的实验表明,我们的方法可以对图像分类的流行基准数据集实现显着的结果。
translated by 谷歌翻译
在图像分类中,获得足够的标签通常昂贵且耗时。为了解决这个问题,域适应通常提供有吸引力的选择,给出了来自类似性质但不同域的大量标记数据。现有方法主要对准单个结构提取的表示的分布,并且表示可以仅包含部分信息,例如,仅包含部分饱和度,亮度和色调信息。在这一行中,我们提出了多代表性适应,这可以大大提高跨域图像分类的分类精度,并且特别旨在对准由名为Inception Adaption Adationation模块(IAM)提取的多个表示的分布。基于此,我们呈现多色自适应网络(MRAN)来通过多表示对准完成跨域图像分类任务,该任向性可以捕获来自不同方面的信息。此外,我们扩展了最大的平均差异(MMD)来计算适应损耗。我们的方法可以通过扩展具有IAM的大多数前进模型来轻松实现,并且网络可以通过反向传播有效地培训。在三个基准图像数据集上进行的实验证明了备的有效性。代码已在https://github.com/easezyc/deep-transfer -learning上获得。
translated by 谷歌翻译
近年来见证了基于地点的社交网络(LBSN)服务的日益普及,这为构建个性化的兴趣点(POI)推荐系统提供了无与伦比的机会。现有的POI推荐和位置预测任务利用过去的信息来从单个方向角度使用过去的推荐或预测,而缺少的POI类别识别任务需要在缺少类别之前和之后使用检查信息。因此,长期存在的挑战是如何在移动用户的现实检查数据中有效地识别丢失的POI类别。为此,在本文中,我们提出了一种新的神经网络方法,通过整合双向全球非个人转换模式和用户的个人喜好来识别缺失的POI类别。具体而言,我们精致地设计了一个关注匹配的单元格,以模拟登记类别信息如何与他们的非个人转换模式和个人偏好匹配。最后,我们在两个现实世界数据集中评估我们的模型,与最先进的基线相比,这明确验证了其有效性。此外,我们的模型可以自然扩展,以解决具有竞争性能的下一个POI类别推荐和预测任务。
translated by 谷歌翻译
许多真实应用程序的预测任务需要在用户的事件序列中模拟多阶特征交互以获得更好的检测性能。然而,现有的流行解决方案通常遭受两个关键问题:1)仅关注特征交互并无法捕获序列影响;2)仅关注序列信息,但忽略每个事件的内部特征关系,因此无法提取更好的事件表示。在本文中,我们考虑使用用户的事件顺序捕获分层信息的两级结构:1)基于基于事件表示的学习有效特征交互;2)建模用户历史事件的序列表示。工业和公共数据集的实验结果清楚地表明,与最先进的基线相比,我们的模式实现了更好的性能。
translated by 谷歌翻译
域适应任务,如跨域情感分类的目标在于利用在目标域源域中现有数据标记和未标记的或标记的几个数据经由减少数据分布之间的偏移,以提高在目标域的性能。现有跨域情绪分类方法需要区分枢转,即,域共享情绪词语,和非枢转时,即,该特定域的情绪也就是说,对于优良的适应性能。在本文中,我们首先设计一个类别关注网络(CAN),然后提出一个名为CAN-CNN集成CAN和卷积神经网络(CNN)模型。在一方面,该模型的问候基点和非关键数据作为统一的类别属性的话,可以自动捕捉他们提高域自适应性能;在另一方面,该模式使得在解释性试图了解转移类别属性词。具体地,我们的模型的优化目标具有三个不同的部分:1)监督分类损失; 2)类别特征权重的分布丢失; 3)的域不变性损失。最后,该模型在三个民情分析数据集进行评估,结果表明,CAN-CNN能优于其他各种基线的方法。
translated by 谷歌翻译