在本文中,我们展示了一种独特的配方,可以通过将预处理技术融合到深度学习模型中来增强音频机学习方法的有效性。我们的解决方案通过通过训练而不是昂贵的随机搜索来优化超参数来加速培训和推理性能,从而从音频信号中构建可靠的蚊子探测器。此处介绍的实验和结果是MOS C提交ACM 2022挑战的一部分。在未发表的测试集上,我们的结果优于已发布的基线212%。我们认为,这是建立强大的生物声学系统的最好的现实世界中的一个例子之一,该系统在嘈杂的条件下提供可靠的蚊子检测。
translated by 谷歌翻译
蒙特卡洛树搜索(MCTS)是一种搜索最佳决策的最佳先入点方法。 MCT的成功在很大程度上取决于树木的建造方式,并且选择过程在其中起着基本作用。被证明是可靠的一种特殊选择机制是基于树木(UCT)的上限置信度范围。 UCT试图通过考虑存储在MCT的统计树中的值来平衡探索和剥削。但是,对MCTS UCT的一些调整对于这是必要的。在这项工作中,我们使用进化算法(EAS)以替代UCT公式并在MCT中使用进化的表达式来进化数学表达式。更具体地说,我们通过在MCTS方法(SIEA-MCT)中提出的语义启发的进化算法来发展表达式。这是受遗传编程(GP)语义的启发,其中使用健身案例被视为在GP中采用的要求。健身病例通常用于确定个体的适应性,可用于计算个体的语义相似性(或差异)。但是,MCT中没有健身案例。我们通过使用MCT的多个奖励值来扩展此概念,从而使我们能够确定个人及其语义的适应性。通过这样做,我们展示了SIEA-MCT如何能够成功地发展数学表达式,而数学表达式与UCT相比,无需调整这些演变的表达式而产生更好或竞争的结果。我们比较了提出的SIEA-MCT与MCTS算法,MCTS快速动作值估计算法的性能, *-minimax家族的三种变体,一个随机控制器和另外两种EA方法。我们始终展示SIEA-MCT在挑战性的Carcassonne游戏中如何优于大多数这些智能控制者。
translated by 谷歌翻译
本文通过讨论参加了为期三年的SubT竞赛的六支球队的不同大满贯策略和成果,报道了地下大满贯的现状。特别是,本文有四个主要目标。首先,我们审查团队采用的算法,架构和系统;特别重点是以激光雷达以激光雷达为中心的SLAM解决方案(几乎所有竞争中所有团队的首选方法),异质的多机器人操作(包括空中机器人和地面机器人)和现实世界的地下操作(从存在需要处理严格的计算约束的晦涩之处)。我们不会回避讨论不同SubT SLAM系统背后的肮脏细节,这些系统通常会从技术论文中省略。其次,我们通过强调当前的SLAM系统的可能性以及我们认为与一些良好的系统工程有关的范围来讨论该领域的成熟度。第三,我们概述了我们认为是基本的开放问题,这些问题可能需要进一步的研究才能突破。最后,我们提供了在SubT挑战和相关工作期间生产的开源SLAM实现和数据集的列表,并构成了研究人员和从业人员的有用资源。
translated by 谷歌翻译
变异量子算法(VQA)在NISQ时代表现出巨大的潜力。在VQA的工作流程中,Ansatz的参数迭代更新以近似所需的量子状态。我们已经看到了各种努力,以较少的大门起草更好的安萨兹。在量子计算机中,栅极Ansatz最终将转换为控制信号,例如TransMons上的微波脉冲。并且对照脉冲需要精心校准,以最大程度地减少误差(例如过度旋转和旋转)。在VQA的情况下,此过程将引入冗余,但是VQAS的变异性能自然可以通过更新幅度和频率参数来处理过度旋转和重组的问题。因此,我们提出了PAN,这是一种用于VQA的天然脉冲ANSATZ GENTARATOR框架。我们生成具有可训练参数用于振幅和频率的天然脉冲ansatz。在我们提出的锅中,我们正在调整参数脉冲,这些脉冲在NISQ计算机上得到了内在支持。考虑到本机 - 脉冲ANSATZ不符合参数迁移规则,我们需要部署非级别优化器。为了限制发送到优化器的参数数量,我们采用了一种生成本机 - 脉冲ANSATZ的渐进式方式。实验是在模拟器和量子设备上进行的,以验证我们的方法。当在NISQ机器上采用时,PAN获得的延迟平均提高了86%。 PAN在H2和HEH+上的VQE任务分别能够达到99.336%和96.482%的精度,即使NISQ机器中有很大的噪声。
translated by 谷歌翻译
我们提供了第一个子线性空间和次线性遗憾算法,用于在线学习,并通过专家建议(反对遗忘的对手),解决了Srinivas,Woodruff,Xu和Zhou最近提出的一个公开问题(STOC 2022)。我们还通过证明对自适应对手的任何子线性遗憾算法的线性记忆下限,证明了遗忘和(强)适应对手之间的分离。我们的算法基于一个新颖的泳池选择程序,该程序绕过了传统的在线学习领导者选择的智慧,以及将任何弱的子线性遗憾$ O(t)$算法转变为$ t^{1- \ alpha} $遗憾算法,这可能具有独立的利益。我们的下边界利用了零和游戏中无需重新学习和平衡计算的连接,从而证明了与自适应对手相对于自适应对手的强大界限。
translated by 谷歌翻译
许多度量学习任务,例如三胞胎学习,最近的邻居检索和可视化,主要是将最终度量是欧几里得距离的某种变体(例如余弦或玛哈拉诺省)的嵌入任务,并且算法必须学会嵌入点进入预选空间。通常不探索对非欧国人几何形状或适当性的研究,我们认为这是由于缺乏学习非欧盟距离距离的工具所致。在认为使用不对称方法特别研究的情况下,我们提出了一种通过输入凸神经网络以可微分方式学习任意伯格曼分歧的新方法。在一组新的和先前研究的任务中,包括不对称回归,排名和聚类,我们证明我们的方法比以前的布雷格曼学习方法更忠实地学习分歧。为此,我们获得了学习神经差异的第一种方法,并继承了布雷格曼分歧的许多不错的数学特性,为更好地发展和研究不对称距离学习提供了基础和工具。
translated by 谷歌翻译
我们根据光学通信中的载体回收率的变异推断研究了自适应盲人均衡器的潜力。这些均衡器基于最大似然通道估计的低复杂性近似。我们将变异自动编码器(VAE)均衡器的概念概括为包括概率星座塑形(PCS)的高阶调制格式,无处不在,在光学通信中,对接收器进行过度采样和双极化传输。除了基于卷积神经网络的黑盒均衡器外,我们还提出了基于线性蝴蝶滤波器的基于模型的均衡器,并使用变异推理范式训练过滤器系数。作为副产品,VAE还提供了可靠的通道估计。我们在具有符号间干扰(ISI)的经典添加剂白色高斯噪声(AWGN)通道和色散线性光学双极化通道上分析了VAE的性能和灵活性。我们表明,对于固定的固定通道但也随时间变化的通道,它可以超越最先进的恒定算法(CMA)来扩展盲人自适应均衡器的应用范围。评估伴随着超参数分析。
translated by 谷歌翻译
我们提出了Findit,这是一个简单而多功能的框架,统一了各种视觉接地和本地化任务,包括引用表达理解,基于文本的本地化和对象检测。我们体系结构的关键是一个有效的多尺度融合模块,该模块统一了整个任务中不同的本地化要求。此外,我们发现标准对象检测器在统一这些任务的无需特定任务设计,损失或预计算检测方面非常有效。我们的端到端可训练框架灵活,准确地响应了零,一个或多个对象的广泛的参考表达,本地化或检测查询。在这些任务上进行了共同培训,发现在引用表达和基于文本的本地化方面,胜过最高的艺术状态,并在对象检测中表现出竞争性的性能。最后,与强大的单任务基准相比,Findit可以更好地推广到分布数据和新型类别。所有这些都是通过一个单一的,统一和有效的模型来完成的。代码将发布。
translated by 谷歌翻译
排名汇总旨在将许多替代品的偏好排名与不同选民的偏替排名组合成单一共识排名。然而,作为各种实际应用的有用模型,它是一个计算上有挑战性的问题。在本文中,我们提出了一种有效的混合进化排名算法来解决完整和部分排名的排名聚集问题。该算法具有基于协调对的语义交叉,并通过有效的增量评估技术加强了较晚的验收本地搜索。进行实验以评估算法,与最先进的算法相比,表明基准实例上具有高度竞争性能。为了展示其实际有用性,算法应用于标签排名,这是一个重要的机器学习任务。
translated by 谷歌翻译
我们介绍了具有磁隧道结(MTJ)突触的神经形态网络的第一个实验证明,其通过矢量矩阵乘法进行图像识别。我们还模拟了执行Mnist手写数字识别的大型MTJ网络,展示MTJ交叉栏可以匹配映射器精度,同时提供更高的精度,稳定性和耐久性。
translated by 谷歌翻译