我们为宇宙结构形成构建了一个场级模拟器,该模拟器在非线性方案中是准确的。我们的仿真器由两个卷积神经网络组成,这些神经网络训练有素,可根据其线性输入输出N体模拟粒子的非线性位移和速度。宇宙学的依赖性是在神经网络的每一层上以样式参数的形式编码的,从而使模拟器能够有效地插入了在广泛的背景问题范围内,不同扁平$ \ lambda $ cdm宇宙之间的结构形成结果。神经网络体系结构使模型可通过构造来区分,从而为快速场水平推断提供了强大的工具。我们通过考虑几个摘要统计数据,包括具有和不带红移空间扭曲的密度谱,位移功率谱,动量功率谱,密度双光谱,光晕丰度以及带有红移空间的光晕概况,并没有红移空间,我们可以测试方法的准确性。扭曲。我们将模拟器中的这些统计数据与完整的N体结果,可乐方法和没有宇宙学依赖性的基准神经网络进行了比较。我们发现我们的仿真器将准确的结果降至$ k \ sim 1 \ \ mathrm {mpc}^{ - 1} \,h $,代表对COLA和基金神经网络的可观改进。我们还证明,我们的模拟器很好地概括到包含原始非高斯性的初始条件,而无需任何其他样式参数或再培训。
translated by 谷歌翻译
我们训练一个神经网络模型,以预测宇宙N体模拟的全相空间演化。它的成功表明,神经网络模型正在准确地近似绿色的功能扩展,该功能将模拟的初始条件与其在深层非线性方向上的后期结合到结果。我们通过评估其在具有已知精确解决方案或充分理解扩展的简单情况下的良好理解的简单案例上的表现来测试这种近似值的准确性。这些场景包括球形构型,隔离平面波和两个相互作用的平面波:与用于训练的高斯随机场有很大不同的初始条件。我们发现我们的模型可以很好地推广到这些良好理解的方案,这表明网络已经推断了一般的物理原理,并从复杂的随机高斯训练数据中学习了非线性模式耦合。这些测试还为查找模型的优势和劣势以及确定改进模型的策略提供了有用的诊断。我们还测试了仅包含横向模式的初始条件,该模式的模式不仅在其相位上有所不同,而且还与训练集中使用的纵向生长模式相比。当网络遇到与训练集正交的这些初始条件时,该模型将完全失败。除了这些简单的配置外,我们还评估了模型对N体模拟的标准初始条件的密度,位移和动量功率谱的预测。我们将这些摘要统计数据与N体结果和称为COLA的近似快速模拟方法进行了比较。我们的模型在$ k \ sim 1 \ \ mathrm {mpc}^{ - 1} \,h $的非线性尺度上达到百分比精度,代表了对COLA的显着改进。
translated by 谷歌翻译
复杂的系统(恒星,超新星,星系和群集)通常在可观察性质(例如,亮度,速度分散,振荡周期,温度)之间表现出低散射关系。这些缩放关系可以照亮底层物理,可以为估计质量和距离提供观测工具。机器学习可以在抽象的高维参数空间中寻找新的扩展关系(或对现有关系的简单扩展)提供系统的系统。我们使用称为符号回归(SR)的机器学习工具,该工具以分析方程的形式在给定的数据集中绘制模式。我们专注于Sunyaev-Zeldovich Flux $ - $群集质量关系($ Y_ \ MATHRM {SZ} -M $),它会影响来自集群丰富数据的宇宙学参数的推断。使用SR对来自IllustrySTG流体动力学模拟的数据,我们找到了一个新的群集质量代理,它结合了$ Y_ \ MATHRM {SZ} $和电离气体的浓度($ c_ \ mathrm {gas} $):$ m \ propto y_ \ mathrm {ccon} ^ {3/5} \ Equiv y_ \ mathrm {sz} ^ {3/5}(1-a \,c_ \ mathrm {gas})$。 $ y_ \ mathrm {coct} $减少预测$ m $的分散$ \ sim 20-30 $%的大型群集($ m \ gtrsim 10 ^ {14} \,h ^ { - 1} \,m_ \ oott $)在高和低频的高频上,与使用只需$ y_ \ mathrm {sz} $相比。我们表明对$ C_ \ MATHRM {GARS} $的依赖性与展示比其郊区更大的分散的集群核心。最后,我们从骆驼项目的模拟中测试$ y_ \ mathrm {cenc} $ in clusters,并显示$ y_ \ mathrm {crc} $对宇宙学,天体物理学,划分物理学和宇宙方差的变化是稳健的。我们的结果和方法可以用于电流和即将到来的CMB和X射线调查的精确多波长簇质量估计,如ACT,所以,SPT,肌肉和CMB-S4。
translated by 谷歌翻译
制定了具有机器学习模拟(骆驼)项目的宇宙学和天体物理学,通过数千名宇宙的流体动力模拟和机器学习将宇宙学与天体物理学结合起来。骆驼包含4,233个宇宙学仿真,2,049个n-body和2,184个最先进的流体动力模拟,在参数空间中采样巨大的体积。在本文中,我们介绍了骆驼公共数据发布,描述了骆驼模拟的特性和由它们产生的各种数据产品,包括光环,次麦,银河系和空隙目录,功率谱,Bispectra,Lyman - $ \ Alpha $光谱,概率分布函数,光环径向轮廓和X射线光子列表。我们还释放了超过骆驼 - 山姆的数十亿个星系的目录:与Santa Cruz半分析模型相结合的大量N身体模拟。我们释放包含350多个Terabytes的所有数据,并包含143,922个快照,数百万光环,星系和摘要统计数据。我们提供有关如何访问,下载,读取和处理数据AT \ URL {https://camels.readthedocs.io}的进一步技术详细信息。
translated by 谷歌翻译
我们对托管银河系和andromeda星系的群众呈现出新的限制,并使用图形神经网络导出。我们的型号培训了骆驼项目的数千个最先进的流体动力模拟,仅利用属于晕圈的星系的位置,速度和恒星群体,并且能够对无似然推断进行无似的推理晕群,同时占宇宙学和天体物理的不确定性。我们的制约因素与其他传统方法的估计一致。
translated by 谷歌翻译
了解晕星连接是基本的,以提高我们对暗物质的性质和性质的知识。在这项工作中,我们构建一个模型,鉴于IT主机的星系的位置,速度,恒星群体和半径的位置。为了捕获来自星系属性的相关性及其相位空间的相关信息,我们使用图形神经网络(GNN),该网络设计用于使用不规则和稀疏数据。我们从宇宙学和天体物理学中培训了我们在Galaxies上的模型,从宇宙学和天体物理学与机器学习模拟(骆驼)项目。我们的模型,占宇宙学和天体物理的不确定性,能够用$ \ SIM 0.2欧元的准确度来限制晕群。此外,在一套模拟上培训的GNN能够在用利用不同的代码的模拟上进行测试时保留其精度的一部分精度。 GNN的Pytorch几何实现在HTTPS://github.com/pablovd/halographnet上公开可用于github上
translated by 谷歌翻译
胎儿镜检查激光​​光凝是一种广泛采用的方法,用于治疗双胞胎输血综合征(TTTS)。该过程涉及光凝病理吻合术以调节双胞胎之间的血液交换。由于观点有限,胎儿镜的可操作性差,可见性差和照明的可变性,因此该程序尤其具有挑战性。这些挑战可能导致手术时间增加和消融不完全。计算机辅助干预措施(CAI)可以通过识别场景中的关键结构并通过视频马赛克来扩展胎儿镜观景领域,从而为外科医生提供决策支持和背景意识。由于缺乏设计,开发和测试CAI算法的高质量数据,该领域的研究受到了阻碍。通过作为MICCAI2021内窥镜视觉挑战组织的胎儿镜胎盘胎盘分割和注册(FETREG2021)挑战,我们发布了第一个Largescale Multencentre TTTS数据集,用于开发广义和可靠的语义分割和视频摩擦质量algorithms。对于这一挑战,我们发布了一个2060张图像的数据集,该数据集是从18个体内TTTS胎儿镜检查程序和18个简短视频剪辑的船只,工具,胎儿和背景类别的像素通道。七个团队参与了这一挑战,他们的模型性能在一个看不见的测试数据集中评估了658个从6个胎儿镜程序和6个短剪辑的图像的图像。这项挑战为创建通用解决方案提供了用于胎儿镜面场景的理解和摩西式解决方案的机会。在本文中,我们介绍了FETREG2021挑战的发现,以及报告TTTS胎儿镜检查中CAI的详细文献综述。通过这一挑战,它的分析和多中心胎儿镜数据的发布,我们为该领域的未来研究提供了基准。
translated by 谷歌翻译
在此贡献中,我们使用一种合奏深度学习方法来组合两个单个单阶段探测器(即Yolov4和Yolact)的预测,目的是检测内窥镜图像中的伪像。这种整体策略使我们能够改善各个模型的鲁棒性,而无需损害其实时计算功能。我们通过训练和测试两个单独的模型和各种集合配置在“内窥镜伪影检测挑战”数据集中证明了方法的有效性。广泛的实验表明,在平均平均精度方面,合奏方法比单个模型和以前的作品的优越性。
translated by 谷歌翻译
图形神经网络(GNN)已被证明可以实现竞争结果,以解决与图形相关的任务,例如节点和图形分类,链接预测和节点以及各种域中的图形群集。大多数GNN使用消息传递框架,因此称为MPNN。尽管有很有希望的结果,但据报道,MPNN会遭受过度平滑,过度阵型和不足的影响。文献中已经提出了图形重新布线和图形池作为解决这些局限性的解决方案。但是,大多数最先进的图形重新布线方法无法保留该图的全局拓扑,因此没有可区分(电感),并且需要调整超参数。在本文中,我们提出了Diffwire,这是一个在MPNN中进行图形重新布线的新型框架,它通过利用LOV \'ASZ绑定来原理,完全可区分且无参数。我们的方法通过提出两个新的,mpnns中的新的互补层来提供统一的图形重新布线:首先,ctlayer,一个学习通勤时间并将其用作边缘重新加权的相关函数;其次,Gaplayer是优化光谱差距的图层,具体取决于网络的性质和手头的任务。我们从经验上验证了我们提出的方法的价值,并使用基准数据集分别验证了这些层的每个层以进行图形分类。 Diffwire将通勤时间的可学习性汇集到相关的曲率定义,为发展更具表现力的MPNN的发展打开了大门。
translated by 谷歌翻译
卷积和复发性神经网络的结合是一个有希望的框架,它允许提取高质量时空特征以及其时间依赖性,这是时间序列预测问题(例如预测,分类或异常检测)的关键。在本文中,引入了TSFEDL库。它通过使用卷积和经常性的深神经网络来编译20种时间序列提取和预测的最先进方法,用于在多个数据挖掘任务中使用。该库是建立在AGPLV3许可下的一组TensorFlow+Keras和Pytorch模块上的。本提案中包含的架构的性能验证证实了此Python软件包的有用性。
translated by 谷歌翻译