在本文中,我们提出了一种新的贝叶斯在线预测算法,用于局部可观察性(ATPO)下的Ad Hoc团队的问题设置,这使得与未知的队友执行未知任务的运行协作,而无需预先协调协议。与以前的作品不同,假设环境的完全可观察状态,ATPO使用代理商的观察来确定队友正在执行哪项任务的部分可观察性。我们的方法既不假设队友的行为也不是可见的,也不是环境奖励信号。我们在三个域中评估ATPO - 追踪域的两个修改版本,具有部分可观察性和过核域。我们的研究结果表明,ATPO在识别可能的任务中的大型文库中,在近乎最佳的时间内求助,以及在适应越来越大的问题尺寸方面可以进行高效的速度,可以有效和强大。
translated by 谷歌翻译
在这项工作中,我们将注意力集中在数据分布与基于Q学基于Q学基于函数近似之间的相互作用的研究。我们提供了一个理论和实证分析,以及为什么数据分布的不同性质可以有助于调节算法不稳定性的来源。首先,我们重新审视近似动态编程算法性能的理论界限。其次,我们提供了一种新型的四态MDP,突出了在线和离线设置中具有功能近似的Q学习算法的数据分布的影响。最后,我们通过实验评估数据分布属性在离线深度Q网算法的性能中的影响。我们的结果表明:(i)数据分布需要拥有某些属性,以便在离线设置中鲁棒地学习,即距离MDP的最佳策略和高覆盖范围内的分布在状态 - 动作空间上的低距离; (ii)高熵数据分布可以有助于减轻算法不稳定性的来源。
translated by 谷歌翻译
胎儿镜检查激光​​光凝是一种广泛采用的方法,用于治疗双胞胎输血综合征(TTTS)。该过程涉及光凝病理吻合术以调节双胞胎之间的血液交换。由于观点有限,胎儿镜的可操作性差,可见性差和照明的可变性,因此该程序尤其具有挑战性。这些挑战可能导致手术时间增加和消融不完全。计算机辅助干预措施(CAI)可以通过识别场景中的关键结构并通过视频马赛克来扩展胎儿镜观景领域,从而为外科医生提供决策支持和背景意识。由于缺乏设计,开发和测试CAI算法的高质量数据,该领域的研究受到了阻碍。通过作为MICCAI2021内窥镜视觉挑战组织的胎儿镜胎盘胎盘分割和注册(FETREG2021)挑战,我们发布了第一个Largescale Multencentre TTTS数据集,用于开发广义和可靠的语义分割和视频摩擦质量algorithms。对于这一挑战,我们发布了一个2060张图像的数据集,该数据集是从18个体内TTTS胎儿镜检查程序和18个简短视频剪辑的船只,工具,胎儿和背景类别的像素通道。七个团队参与了这一挑战,他们的模型性能在一个看不见的测试数据集中评估了658个从6个胎儿镜程序和6个短剪辑的图像的图像。这项挑战为创建通用解决方案提供了用于胎儿镜面场景的理解和摩西式解决方案的机会。在本文中,我们介绍了FETREG2021挑战的发现,以及报告TTTS胎儿镜检查中CAI的详细文献综述。通过这一挑战,它的分析和多中心胎儿镜数据的发布,我们为该领域的未来研究提供了基准。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
制定了具有机器学习模拟(骆驼)项目的宇宙学和天体物理学,通过数千名宇宙的流体动力模拟和机器学习将宇宙学与天体物理学结合起来。骆驼包含4,233个宇宙学仿真,2,049个n-body和2,184个最先进的流体动力模拟,在参数空间中采样巨大的体积。在本文中,我们介绍了骆驼公共数据发布,描述了骆驼模拟的特性和由它们产生的各种数据产品,包括光环,次麦,银河系和空隙目录,功率谱,Bispectra,Lyman - $ \ Alpha $光谱,概率分布函数,光环径向轮廓和X射线光子列表。我们还释放了超过骆驼 - 山姆的数十亿个星系的目录:与Santa Cruz半分析模型相结合的大量N身体模拟。我们释放包含350多个Terabytes的所有数据,并包含143,922个快照,数百万光环,星系和摘要统计数据。我们提供有关如何访问,下载,读取和处理数据AT \ URL {https://camels.readthedocs.io}的进一步技术详细信息。
translated by 谷歌翻译
数据增强是自然语言处理(NLP)模型的鲁棒性评估的重要组成部分,以及增强他们培训的数据的多样性。在本文中,我们呈现NL-Cogmenter,这是一种新的参与式Python的自然语言增强框架,它支持创建两个转换(对数据的修改)和过滤器(根据特定功能的数据拆分)。我们描述了框架和初始的117个变换和23个过滤器,用于各种自然语言任务。我们通过使用其几个转换来分析流行自然语言模型的鲁棒性来证明NL-Upmenter的功效。基础架构,Datacards和稳健性分析结果在NL-Augmenter存储库上公开可用(\ url {https://github.com/gem-benchmark/nl-augmenter})。
translated by 谷歌翻译
最近已经提出了与紧急磁化动态的互连磁纳环阵列用于储层计算应用,但是对于它们进行计算有用,必须可以优化其动态响应。在这里,我们使用一种现象学模型来证明可以通过调整使用旋转磁场将数据的缩放和输入速率控制到系统中的超级参数来优化这些储存器。我们使用任务独立的指标来评估每组上的这些超参数的戒指的计算能力,并展示这些指标如何直接关联与口头和书面识别任务中的性能相关联。然后,我们通过扩展储库的输出来包括环阵列磁态的多个并发度量,可以进一步改善这些度量。
translated by 谷歌翻译
灵巧的操纵仍然是机器人技术中的一个空缺问题。为了协调研究界为解决这个问题的努力,我们提出了共同的基准。我们设计和构建了机器人平台,该平台托管在MPI上供智能系统托管,可以远程访问。每个平台由三个能够敏捷物体操纵的机器人手指组成。用户能够通过提交自动执行的代码(类似于计算群集)来远程控制平台。使用此设置,i)我们举办机器人竞赛,来自世界任何地方的团队访问我们的平台以应对具有挑战性的任务ii)我们发布了在这些比赛中收集的数据集(包括数百个机器人小时),而我们为研究人员提供了访问自己项目的这些平台。
translated by 谷歌翻译
随机平滑最近被出现为一种有效的工具,可以在尺度上进行深度神经网络分类器认证。随机平滑的所有现有技术都集中在各向同性$ \ ell_p $认证,这具有通过$ \ ell_p $ -norm半径在各向同性方法中可以轻松地进行证书的优势。然而,各向同性认证限制了可以通过输入到最坏情况对手的输入的区域,即,它不能推理其他“关闭”,潜在的大,恒定的预测安全区域。为了缓解这个问题,(i)我们在简化分析后理论上将各向同性随机平滑$ \ ell_1 $和$ \ ell_2 $证明延伸到其广泛的各向异性同行。此外,(ii)我们提出了评估指标,允许比较一般证书 - 如果它通过经过认证区域的卷定量每个证书的量化,证书优于另一个证书。我们介绍ACCER,是通过体积最大化获得给定测试集样本的各向异性证书的实际框架。我们的经验结果表明,ACCER在多个半径的CIFAR-10和ImageNet上实现最先进的$ \ ell_1 $和$ \ ell_2 $认证准确性,同时在体积方面认证大幅更大的地区,从而突出了益处远离各向同性分析。我们的代码可以在https://github.com/motasemalfarra/ancer中获得。
translated by 谷歌翻译
开发对手挑战NLP系统的方法是提高模型性能和解释性的有前途的途径。在这里,我们描述了团队在第一个动态对抗数据收集(DADC)的任务1中“长角牛”的方法,该研讨会要求团队手动欺骗一个模型,以挖掘出挖掘的问题回答任务。我们的团队首先结束,模型错误率为62%。我们主张采用系统的,语言知情的方法来制定对抗性问题,并描述了试点实验的结果以及我们的官方提交。
translated by 谷歌翻译