在终身环境中学习,动态不断发展,是对电流加强学习算法的艰难挑战。然而,这将是实际应用的必要特征。在本文中,我们提出了一种学习超策略的方法,其输入是时间,输出当时要查询的策略的参数。此超级策略验证,以通过引入受控偏置的成本来最大限度地提高估计的未来性能,有效地重用过去数据。我们将未来的性能估计与过去的绩效相结合,以减轻灾难性遗忘。为避免过度接收收集的数据,我们派生了我们嵌入惩罚期限的可差化方差。最后,我们在与最先进的算法相比,在逼真的环境中,经验验证了我们的方法,包括水资源管理和交易。
translated by 谷歌翻译
在本文中,我们介绍了TweetNLP,这是社交媒体中自然语言处理(NLP)的集成平台。TweetNLP支持一套多样化的NLP任务,包括诸如情感分析和命名实体识别的通用重点领域,以及社交媒体特定的任务,例如表情符号预测和进攻性语言识别。特定于任务的系统由专门用于社交媒体文本的合理大小的基于变压器的语言模型(尤其是Twitter)提供动力,无需专用硬件或云服务即可运行。TweetNLP的主要贡献是:(1)使用适合社会领域的各种特定于任务的模型,用于支持社交媒体分析的现代工具包的集成python库;(2)使用我们的模型进行无编码实验的交互式在线演示;(3)涵盖各种典型社交媒体应用的教程。
translated by 谷歌翻译
大多数人类活动都需要在正式或非正式团队内部和跨部队进行合作。我们对团队所花费的合作努力与他们的表现有何关系的理解仍然是一个辩论问题。团队合作导致了一个高度相互联系的生态系统,这些生态系统可能是重叠的组件,其中与团队成员和其他团队进行互动执行任务。为了解决这个问题,我们提出了一个图形神经网络模型,旨在预测团队的性能,同时确定确定这种结果的驱动程序。特别是,该模型基于三个架构渠道:拓扑,中心性和上下文,它们捕获了不同因素可能塑造了团队的成功。我们赋予该模型具有两种注意机制,以提高模型性能并允许解释性。第一种机制允许查明团队内部的关键成员。第二种机制使我们能够量化三个驱动程序在确定结果绩效方面的贡献。我们在广泛的域上测试模型性能,其表现优于所考虑的大多数经典和神经基准。此外,我们包括专门设计的合成数据集,以验证该模型如何删除我们的模型胜过基线的预期属性。
translated by 谷歌翻译
我们表明,著名的混音的有效性[Zhang等,2018],如果而不是将其用作唯一的学习目标,就可以进一步改善它,而是将其用作标准跨侧面损失的附加规则器。这种简单的变化不仅提供了太大的准确性,而且在大多数情况下,在各种形式的协变量转移和分布外检测实验下,在大多数情况下,混合量的预测不确定性估计质量都显着提高了。实际上,我们观察到混合物在检测出分布样本时可能会产生大量退化的性能,因为我们在经验上表现出来,因为它倾向于学习在整个过程中表现出高渗透率的模型。很难区分分布样本与近分离样本。为了显示我们的方法的功效(RegMixup),我们在视觉数据集(Imagenet&Cifar-10/100)上提供了详尽的分析和实验,并将其与最新方法进行比较,以进行可靠的不确定性估计。
translated by 谷歌翻译
精确农业正在迅速吸引研究,以有效地引入自动化和机器人解决方案,以支持农业活动。葡萄园和果园中的机器人导航在自主监控方面具有竞争优势,并轻松获取农作物来收集,喷涂和执行时必的耗时必要任务。如今,自主导航算法利用了昂贵的传感器,这也需要大量的数据处理计算成本。尽管如此,葡萄园行代表了一个具有挑战性的户外场景,在这种情况下,GPS和视觉进程技术通常难以提供可靠的定位信息。在这项工作中,我们将Edge AI与深度强化学习相结合,以提出一种尖端的轻质解决方案,以解决自主葡萄园导航的问题,而无需利用精确的本地化数据并通过基于灵活的学习方法来克服任务列出的算法。我们训练端到端的感觉运动剂,该端机直接映射嘈杂的深度图像和位置不可稳定的机器人状态信息到速度命令,并将机器人引导到一排的尽头,不断调整其标题以进行无碰撞的无碰撞中央轨迹。我们在现实的模拟葡萄园中进行的广泛实验证明了解决方案的有效性和代理的概括能力。
translated by 谷歌翻译
人们普遍认为,深网的成功在于他们学习数据功能的有意义表示的能力。然而,了解该功能学习何时以及如何提高性能仍然是一个挑战:例如,它对经过对图像进行分类的现代体系结构有益,而对于在相同数据上针对同一任务培训的完全连接的网络是有害的。在这里,我们提出了有关此难题的解释,表明特征学习可以比懒惰训练(通过随机特征内核或NTK)更糟糕,因为前者可以导致较少的神经表示。尽管已知稀疏性对于学习各向异性数据是必不可少的,但是当目标函数沿输入空间的某些方向恒定或平滑时,这是有害的。我们在两个设置中说明了这种现象:(i)在D维单元球体上的高斯随机函数的回归,以及(ii)图像基准数据集的分类。对于(i),我们通过训练点数来计算概括误差的缩放率,并证明即使输入空间的尺寸很大,不学习特征的方法也可以更好地推广。对于(ii),我们从经验上表明,学习特征确实会导致稀疏,从而减少图像预测因子的平滑表示。这一事实是可能导致性能恶化的,这与沿差异性的平滑度相关。
translated by 谷歌翻译
精确农业的发展在农业过程中逐渐引入自动化,以支持和合理化与现场管理有关的所有活动。特别是,服务机器人技术通过部署能够在字段中导航的自主代理在执行不同的任务而无需人工干预(例如监视,喷涂和收获)的同时,在这一演变中起主要作用。在这种情况下,全球路径规划是每个机器人任务的第一步,并确保通过完整的现场覆盖范围有效地执行导航。在本文中,我们提出了一种基于学习的方法来解决Waypoint生成,以规划基于行的农作物的导航路径,从利益区域的顶级图表开始。我们提出了一种基于对比损失的新方法,可以将这些点投射到可分离的潜在空间。拟议的深神经网络可以同时在单个正向传球中使用两个专门的头部来预测路点位置和群集分配。对模拟和现实世界图像的广泛实验表明,所提出的方法有效地解决了基于直的和曲面的作物的路点生成问题,从而克服了先前最先进的方法的局限性。
translated by 谷歌翻译
最小化能量的动力系统在几何和物理学中无处不在。我们为GNN提出了一个梯度流框架,其中方程遵循可学习能量的最陡峭下降的方向。这种方法允许从多粒子的角度来解释GNN的演变,以通过对称“通道混合”矩阵的正和负特征值在特征空间中学习吸引力和排斥力。我们对溶液进行光谱分析,并得出结论,梯度流量图卷积模型可以诱导以图高频为主导的动力学,这对于异性数据集是理想的。我们还描述了对常见GNN体系结构的结构约束,从而将其解释为梯度流。我们进行了彻底的消融研究,以证实我们的理论分析,并在现实世界同质和异性数据集上显示了简单和轻量级模型的竞争性能。
translated by 谷歌翻译
为了使腿部机器人执行敏捷,高度动态和接触率丰富的动作,需要对未经线性动力学的启动不足的复合系统进行全身轨迹计算。在这项工作中,我们介绍了Horizon的动手应用,这是一种针对机器人系统量身定制的新型开源框架,可提供一系列工具来简化动态运动的生成。Horizon在涉及多个机器人平台的广泛行为上进行了测试:我们介绍了其构建块,并描述了使用其直观和直接的API生成三个复杂动作的完整过程。
translated by 谷歌翻译
先进的Ligo和先进的处女座地面干涉仪有望探测前所未有的大量空间,从而增强了观测值的发现能力,甚至是重力波发射器的新来源。在这种情况下,高度优化的重力波检测算法的发展至关重要。我们提出了一个新型的分层框架,用于实时检测受语音处理技术启发的引力波,以及在本实施中,基于一种最新的机器学习方法,涉及遗传编程和神经网络的杂交。新提出的框架的关键方面是:结构良好的分层方法和低计算复杂性。本文描述了框架的基本概念和前三层的推导。即使在当前的实现中,这些层是基于使用机器学习方法得出的模型,拟议的分层结构具有普遍的性质。为了训练和测试模型,我们在合成高斯噪声中使用了模拟的二进制黑洞重力波形,代表了高级Ligo灵敏度设计。与更复杂的方法(例如卷积神经网络)相比,我们的框架,即使使用论文中描述的简单地面模型,具有相似的性能,但计算复杂性较低,模块化程度较高。此外,对短期特征的潜在剥削使新框架的结果几乎独立于引力波信号的时间位置,从而在第二代干涉仪中简化了其在实时多层管道中对重力波检测的实时多层管道的未来剥削。
translated by 谷歌翻译