由于其固有的混沌性质,了解层次三重系统的长期演变是具有挑战性的,并且需要计算昂贵的模拟。在这里,我们提出了一个卷积神经网络模型,以通过在第一个$ 5 \ times 10^5 $内二进制轨道上查看其演变来预测层次三元组的稳定性。我们采用正规化的几体代码\ textsc {tsunami}来模拟$ 5 \ times 10^6 $层次结构三元组,我们从中生成了大型培训和测试数据集。我们开发了十二种不同的网络配置,它们使用三元组的轨道元素的不同组合并比较其性能。我们的最佳模型使用了6个时间序列,即半轴轴比率,内部和外偏心,相互倾向和围角的参数。该模型在曲线下达到了超过$ 95 \%$的区域,并告知了研究三重系统稳定性的相关参数。所有训练有素的模型均可公开使用,可以预测分层三重系统的稳定性$ 200 $ 200 $ $倍,比纯$ n $ body方法快。
translated by 谷歌翻译
近年来,机器学习的巨大进步已经开始对许多科学和技术的许多领域产生重大影响。在本文的文章中,我们探讨了量子技术如何从这项革命中受益。我们在说明性示例中展示了过去几年的科学家如何开始使用机器学习和更广泛的人工智能方法来分析量子测量,估计量子设备的参数,发现新的量子实验设置,协议和反馈策略,以及反馈策略,以及通常改善量子计算,量子通信和量子模拟的各个方面。我们重点介绍了公开挑战和未来的可能性,并在未来十年的一些投机愿景下得出结论。
translated by 谷歌翻译
过程变化和设备老化对电路设计师构成了深刻的挑战。如果不对变化对电路路径的延迟的影响进行精确理解,无法正确估计避免定时违规行为的后卫带。对于先进的技术节点,此问题加剧了,其中晶体管尺寸达到原子水平,并且已建立的边缘受到严格限制。因此,传统的最坏情况分析变得不切实际,导致无法忍受的性能开销。相反,过程变化/衰老感知的静态时序分析(STA)为设计师提供了准确的统计延迟分布。然后可以有效地估计小但足够的时正时标志。但是,这样的分析是昂贵的,因为它需要密集的蒙特卡洛模拟。此外,它需要访问基于机密的物理老化模型来生成STA所需的标准细胞库。在这项工作中,我们采用图形神经网络(GNN)来准确估计过程变化和设备衰老对电路中任何路径延迟的影响。我们提出的GNN4REL框架使设计师能够执行快速准确的可靠性估计,而无需访问晶体管模型,标准细胞库甚至STA;这些组件均通过铸造厂的训练纳入GNN模型中。具体而言,对GNN4REL进行了针对工业14NM测量数据进行校准的FinFET技术模型的培训。通过我们对EPFL和ITC-99基准以及RISC-V处理器进行的广泛实验,我们成功估计了所有路径的延迟降级(尤其是在几秒钟内),平均绝对误差降至0.01个百分点。
translated by 谷歌翻译
在过去的几年中,卷积神经网络(CNN)证明了它们直接从孔隙空间几何形状直接预测多孔媒体研究中的特征数量的能力。由于与经典计算方法相比,经常观察到的计算时间显着减少,因此通过CNNS进行的批量参数预测特别令人信服,例如有效扩散。尽管目前的文献主要集中在完全饱和的多孔介质上,但部分饱和的情况也引起了人们的兴趣。由于在这种情况下可用于扩散传输的域的质量不同且更复杂的几何形状,因此标准CNN倾向于以较低的饱和速率失去稳健性和准确性。在本文中,我们证明了CNN直接从完整的孔隙空间几何形状进行相对扩散的预测能力。因此,我们的CNN便利地融合了扩散预测和一个完善的形态模型,该模型描述了部分饱和多孔介质中的相分布。
translated by 谷歌翻译
最近在优化中应用了动力学系统理论,以证明梯度下降算法避免了所谓的损失函数的严格鞍点。但是,在许多现代机器学习应用中,不满足所需的规律条件。特别是,整流线性单元(RELU)网络就是这种情况。在本文中,我们证明了相关动力系统结果的变体,即中心稳定的歧管定理,其中我们放宽了一些规律性要求。然后,我们验证浅层relu网络适合新框架。在基于针对仿射目标功能测量的浅层relu网络的正方形积分损失的临界点的分类为基础,我们推断出梯度下降避免了大多数鞍点。如果初始化足够好,我们将继续证明与全球最小值的融合,这是由限制损失的明确阈值表示的。
translated by 谷歌翻译
神经语言模型有可能支持人类写作。但是,关于其整合和对写作和产出的影响仍然存在问题。为了解决这个问题,我们设计并比较了两个用于写作的用户界面与移动设备上的AI,这些用户界面操纵主动性和控制级别:1)使用连续生成的文本编写,AI添加了逐字文字和用户转向。 2)编写建议,AI建议短语和用户从列表中选择。在监督的在线研究(n = 18)中,参与者使用了这些原型和无AI的基线。我们收集了触摸互动,关于灵感和作者的评分以及访谈数据。有了AI的建议,人们的写作不那么积极,但觉得他们是作者。连续生成的文本减少了这种感知的作者身份,但编辑行为增加了。在这两种设计中,AI都会增加文本长度,并被认为会影响措辞。我们的发现为UI设计决策对用户体验和共同创造系统的产出的影响增加了新的经验证据。
translated by 谷歌翻译
为了改善对步态辅助的可穿戴机器人技术的控制,我们提出了一种基于包括时间历史信息的人工神经网络的连续运动模式识别以及步态阶段和楼梯坡度估算的方法。输入功能仅由处理变量组成,这些变量可以通过单个柄安装的惯性测量单元进行测量。我们引入了可穿戴设备,以获取现实世界环境测试数据,以证明该方法的性能和鲁棒性。确定平均绝对误差(步态相,楼梯斜率)和准确性(运动模式),以进行稳定的步行和稳定的楼梯移动。使用来自不同传感器硬件,传感器固定,移动环境和受试者的测试数据评估鲁棒性。步态阶段稳定步态测试数据的平均绝对误差为2.0-3.5%,对于楼梯斜率估计,步态阶段的平均绝对误差为3.3-3.8 {\ deg}。在测试数据上使用时间历史记录信息的利用在98.51%和99.67%之间的测试数据上正确的运动模式的准确性。结果表明,在稳定步态期间,持续预测步态阶段,楼梯斜率和运动模式的高性能和鲁棒性。如假设的那样,时间历史信息改善了运动模式识别。但是,尽管步射阶段在运动模式之间未经训练的过渡方面表现良好,但我们的定性分析表明,将过渡数据纳入神经网络的训练以改善斜率和运动模式的预测可能是有益的。我们的结果表明,人工神经网络可用于对可穿戴下肢机器人技术的高水平控制。
translated by 谷歌翻译
神经建筑搜索(NAS)已被广泛研究,并已成长为具有重大影响的研究领域。虽然经典的单目标NAS搜索具有最佳性能的体系结构,但多目标NAS考虑了应同时优化的多个目标,例如,将沿验证错误最小化资源使用率。尽管在多目标NAS领域已经取得了长足的进步,但我们认为实际关注的实际优化问题与多目标NAS试图解决的优化问题之间存在一些差异。我们通过将多目标NAS问题作为质量多样性优化(QDO)问题来解决这一差异,并引入了三种质量多样性NAS优化器(其中两个属于多重速度优化器组),以寻求高度多样化但多样化的体系结构对于特定于应用程序特定的利基,例如硬件约束。通过将这些优化器与它们的多目标对应物进行比较,我们证明了质量多样性总体上优于多目标NA在解决方案和效率方面。我们进一步展示了应用程序和未来的NAS研究如何在QDO上蓬勃发展。
translated by 谷歌翻译
通过向每个数据示例添加校准的噪声来保护个人的隐私,差异隐私(DP)已成为保护个人隐私的黄金标准。尽管对分类数据的应用很简单,但在图像上下文中的可用性受到限制。与分类数据相反,图像的含义是相邻像素的空间相关性固有的,使噪声的简单应用不可行。可逆的神经网络(INN)表现出了出色的生成性能,同时仍提供量化确切可能性的能力。他们的原理是基于将复杂的分布转换为一个简单的分布,例如图像进入球形高斯。我们假设在旅馆的潜在空间中添加噪音可以实现差异化的私有图像修改。操纵潜在空间会导致修改的图像,同时保留重要的细节。此外,通过对数据集提供的元数据进行调节,我们旨在使对下游任务的尺寸保持重要意义,例如分类未触及的,同时更改其他可能包含识别信息的其他部分。我们称我们的方法意识到差异隐私(CADP)。我们对公共基准测试数据集以及专用医疗进行实验。此外,我们还展示了方法对分类数据的普遍性。源代码可在https://github.com/cardio-ai/cadp上公开获得。
translated by 谷歌翻译
由于分布式概括是一个普遍不足的问题,因此在不同的研究计划中研究了各种代理目标(例如,校准,对抗性鲁棒性,算法腐败,跨轮班的不变性),导致不同的研究计划,从而提出不同的建议。在共享相同的抱负目标的同时,这些方法从未在相同的实验条件下对真实数据进行测试。在本文中,我们对以前的工作进行了统一的看法,突出了我们经验解决的消息差异,并提供有关如何衡量模型鲁棒性以及如何改进它的建议。为此,我们收集了172个公开可用的数据集对,用于培训和分布外评估准确性,校准错误,对抗性攻击,环境不变性和合成腐败。我们从九个不同的架构中的九个不同的架构中微调了31k网络。我们的发现证实,分布的精度往往会共同增加,但表明它们的关系在很大程度上取决于数据集依赖性,并且通常比以前较小的规模研究所提出的更加细微和更复杂。
translated by 谷歌翻译