Increasing research interests focus on sequential recommender systems, aiming to model dynamic sequence representation precisely. However, the most commonly used loss function in state-of-the-art sequential recommendation models has essential limitations. To name a few, Bayesian Personalized Ranking (BPR) loss suffers the vanishing gradient problem from numerous negative sampling and predictionbiases; Binary Cross-Entropy (BCE) loss subjects to negative sampling numbers, thereby it is likely to ignore valuable negative examples and reduce the training efficiency; Cross-Entropy (CE) loss only focuses on the last timestamp of the training sequence, which causes low utilization of sequence information and results in inferior user sequence representation. To avoid these limitations, in this paper, we propose to calculate Cumulative Cross-Entropy (CCE) loss over the sequence. CCE is simple and direct, which enjoys the virtues of painless deployment, no negative sampling, and effective and efficient training. We conduct extensive experiments on five benchmark datasets to demonstrate the effectiveness and efficiency of CCE. The results show that employing CCE loss on three state-of-the-art models GRU4Rec, SASRec, and S3-Rec can reach 125.63%, 69.90%, and 33.24% average improvement of full ranking NDCG@5, respectively. Using CCE, the performance curve of the models on the test data increases rapidly with the wall clock time, and is superior to that of other loss functions in almost the whole process of model training.
translated by 谷歌翻译
Patients take care of what their teeth will be like after the orthodontics. Orthodontists usually describe the expectation movement based on the original smile images, which is unconvincing. The growth of deep-learning generative models change this situation. It can visualize the outcome of orthodontic treatment and help patients foresee their future teeth and facial appearance. While previous studies mainly focus on 2D or 3D virtual treatment outcome (VTO) at a profile level, the problem of simulating treatment outcome at a frontal facial image is poorly explored. In this paper, we build an efficient and accurate system for simulating virtual teeth alignment effects in a frontal facial image. Our system takes a frontal face image of a patient with visible malpositioned teeth and the patient's 3D scanned teeth model as input, and progressively generates the visual results of the patient's teeth given the specific orthodontics planning steps from the doctor (i.e., the specification of translations and rotations of individual tooth). We design a multi-modal encoder-decoder based generative model to synthesize identity-preserving frontal facial images with aligned teeth. In addition, the original image color information is used to optimize the orthodontic outcomes, making the results more natural. We conduct extensive qualitative and clinical experiments and also a pilot study to validate our method.
translated by 谷歌翻译
Out-of-Distribution (OOD) detection, i.e., identifying whether an input is sampled from a novel distribution other than the training distribution, is a critical task for safely deploying machine learning systems in the open world. Recently, post hoc detection utilizing pre-trained models has shown promising performance and can be scaled to large-scale problems. This advance raises a natural question: Can we leverage the diversity of multiple pre-trained models to improve the performance of post hoc detection methods? In this work, we propose a detection enhancement method by ensembling multiple detection decisions derived from a zoo of pre-trained models. Our approach uses the p-value instead of the commonly used hard threshold and leverages a fundamental framework of multiple hypothesis testing to control the true positive rate of In-Distribution (ID) data. We focus on the usage of model zoos and provide systematic empirical comparisons with current state-of-the-art methods on various OOD detection benchmarks. The proposed ensemble scheme shows consistent improvement compared to single-model detectors and significantly outperforms the current competitive methods. Our method substantially improves the relative performance by 65.40% and 26.96% on the CIFAR10 and ImageNet benchmarks.
translated by 谷歌翻译
Abstractive dialogue summarization has long been viewed as an important standalone task in natural language processing, but no previous work has explored the possibility of whether abstractive dialogue summarization can also be used as a means to boost an NLP system's performance on other important dialogue comprehension tasks. In this paper, we propose a novel type of dialogue summarization task - STRUctured DiaLoguE Summarization - that can help pre-trained language models to better understand dialogues and improve their performance on important dialogue comprehension tasks. We further collect human annotations of STRUDEL summaries over 400 dialogues and introduce a new STRUDEL dialogue comprehension modeling framework that integrates STRUDEL into a graph-neural-network-based dialogue reasoning module over transformer encoder language models to improve their dialogue comprehension abilities. In our empirical experiments on two important downstream dialogue comprehension tasks - dialogue question answering and dialogue response prediction - we show that our STRUDEL dialogue comprehension model can significantly improve the dialogue comprehension performance of transformer encoder language models.
translated by 谷歌翻译
As the number of distributed services (or microservices) of cloud-native applications grows, resource management becomes a challenging task. These applications tend to be user-facing and latency-sensitive, and our goal is to continuously minimize the amount of CPU resources allocated while still satisfying the application latency SLO. Although previous efforts have proposed simple heuristics and sophisticated ML-based techniques, we believe that a practical resource manager should accurately scale CPU resources for diverse applications, with minimum human efforts and operation overheads. To this end, we ask: can we systematically break resource management down to subproblems solvable by practical policies? Based on the notion of CPU-throttle-based performance target, we decouple the mechanisms of SLO feedback and resource control, and implement a two-level framework -- Autothrottle. It combines a lightweight learned controller at the global level, and agile per-microservice controllers at the local level. We evaluate Autothrottle on three microservice applications, with both short-term and 21-day production workload traces. Empirical results show Autothrottle's superior CPU core savings up to 26.21% over the best-performing baselines across applications, while maintaining the latency SLO.
translated by 谷歌翻译
Negotiation is one of the crucial abilities in human communication, and there has been a resurgent research interest in negotiation dialogue systems recently, which goal is to empower intelligent agents with such ability that can efficiently help humans resolve conflicts or reach beneficial agreements. Although there have been many explorations in negotiation dialogue systems, a systematic review of this task has to date remained notably absent. To this end, we aim to fill this gap by reviewing contemporary studies in the emerging field of negotiation dialogue systems, covering benchmarks, evaluations, and methodologies. Furthermore, we also discuss potential future directions, including multi-modal, multi-party, and cross-cultural negotiation scenarios. Our goal is to provide the community with a systematic overview of negotiation dialogue systems and to inspire future research.
translated by 谷歌翻译
The Five-hundred-meter Aperture Spherical radio Telescope (FAST) is the world's largest single-dish radio telescope. Its large reflecting surface achieves unprecedented sensitivity but is prone to damage, such as dents and holes, caused by naturally-occurring falling objects. Hence, the timely and accurate detection of surface defects is crucial for FAST's stable operation. Conventional manual inspection involves human inspectors climbing up and examining the large surface visually, a time-consuming and potentially unreliable process. To accelerate the inspection process and increase its accuracy, this work makes the first step towards automating the inspection of FAST by integrating deep-learning techniques with drone technology. First, a drone flies over the surface along a predetermined route. Since surface defects significantly vary in scale and show high inter-class similarity, directly applying existing deep detectors to detect defects on the drone imagery is highly prone to missing and misidentifying defects. As a remedy, we introduce cross-fusion, a dedicated plug-in operation for deep detectors that enables the adaptive fusion of multi-level features in a point-wise selective fashion, depending on local defect patterns. Consequently, strong semantics and fine-grained details are dynamically fused at different positions to support the accurate detection of defects of various scales and types. Our AI-powered drone-based automated inspection is time-efficient, reliable, and has good accessibility, which guarantees the long-term and stable operation of FAST.
translated by 谷歌翻译
Conventional cameras capture image irradiance on a sensor and convert it to RGB images using an image signal processor (ISP). The images can then be used for photography or visual computing tasks in a variety of applications, such as public safety surveillance and autonomous driving. One can argue that since RAW images contain all the captured information, the conversion of RAW to RGB using an ISP is not necessary for visual computing. In this paper, we propose a novel $\rho$-Vision framework to perform high-level semantic understanding and low-level compression using RAW images without the ISP subsystem used for decades. Considering the scarcity of available RAW image datasets, we first develop an unpaired CycleR2R network based on unsupervised CycleGAN to train modular unrolled ISP and inverse ISP (invISP) models using unpaired RAW and RGB images. We can then flexibly generate simulated RAW images (simRAW) using any existing RGB image dataset and finetune different models originally trained for the RGB domain to process real-world camera RAW images. We demonstrate object detection and image compression capabilities in RAW-domain using RAW-domain YOLOv3 and RAW image compressor (RIC) on snapshots from various cameras. Quantitative results reveal that RAW-domain task inference provides better detection accuracy and compression compared to RGB-domain processing. Furthermore, the proposed \r{ho}-Vision generalizes across various camera sensors and different task-specific models. Additional advantages of the proposed $\rho$-Vision that eliminates the ISP are the potential reductions in computations and processing times.
translated by 谷歌翻译
In this paper, we consider the inventory management (IM) problem where we need to make replenishment decisions for a large number of stock keeping units (SKUs) to balance their supply and demand. In our setting, the constraint on the shared resources (such as the inventory capacity) couples the otherwise independent control for each SKU. We formulate the problem with this structure as Shared-Resource Stochastic Game (SRSG)and propose an efficient algorithm called Context-aware Decentralized PPO (CD-PPO). Through extensive experiments, we demonstrate that CD-PPO can accelerate the learning procedure compared with standard MARL algorithms.
translated by 谷歌翻译
Accurate airway extraction from computed tomography (CT) images is a critical step for planning navigation bronchoscopy and quantitative assessment of airway-related chronic obstructive pulmonary disease (COPD). The existing methods are challenging to sufficiently segment the airway, especially the high-generation airway, with the constraint of the limited label and cannot meet the clinical use in COPD. We propose a novel two-stage 3D contextual transformer-based U-Net for airway segmentation using CT images. The method consists of two stages, performing initial and refined airway segmentation. The two-stage model shares the same subnetwork with different airway masks as input. Contextual transformer block is performed both in the encoder and decoder path of the subnetwork to finish high-quality airway segmentation effectively. In the first stage, the total airway mask and CT images are provided to the subnetwork, and the intrapulmonary airway mask and corresponding CT scans to the subnetwork in the second stage. Then the predictions of the two-stage method are merged as the final prediction. Extensive experiments were performed on in-house and multiple public datasets. Quantitative and qualitative analysis demonstrate that our proposed method extracted much more branches and lengths of the tree while accomplishing state-of-the-art airway segmentation performance. The code is available at https://github.com/zhaozsq/airway_segmentation.
translated by 谷歌翻译